cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254690 Number of decompositions of 2n into a sum of two primes p1 < p2 such that p2-p1 is between a pair of sexy primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 1, 3, 3, 2, 3, 5, 4, 2, 5, 2, 3, 5, 2, 4, 6, 2, 5, 6, 3, 4, 6, 4, 3, 7, 2, 3, 8, 3, 4, 6, 2, 5, 7, 3, 3, 7, 5, 5, 8, 4, 3, 9, 2, 4, 8, 2, 5, 7, 2, 2, 4, 6, 5, 7, 4, 2, 10, 2, 4, 7, 1, 6, 7, 1, 4, 10, 7, 3, 8
Offset: 1

Views

Author

Lei Zhou, Feb 05 2015

Keywords

Comments

"A pair of sexy primes" is defined as two primes p_a < p_b such that p_b = p_a + 6, with p_a from A023201. See the Weisstein link.
The restriction is therefore p_a < p2 - p1 < p_a + 6 for p_a from A023201.
Conjecture: when n>=7, a(n)>0.
The products of sexy prime pairs are listed in A111192.

Examples

			n=7, 2n=14=3+11. 11-3=8, 5<8<11 where {5, 11} is a pair of sexy primes. So a(7)=1.
n=8, 2n=16=3+13=5+11. 13-3=10, 5<10<11; 11-5=6, 5<6<11, where {5, 11} is a pair of sexy primes: two cases found, so a(8)=2.
n=17, 2n=34=3+31=5+29=11+23. 31-3=28, 23<28<29; 29-5=24, 23<24<29; 23-11=12, 7<12<13; where {23,29} and {7,13} are sexy prime pairs: three cases found, so a(17)=3.
		

Crossrefs

Programs

  • Mathematica
    Table[e = 2 n; ct = 0; p1 = 1; While[p1 = NextPrime[p1]; p1 < n, p2 = e - p1; If[PrimeQ[p2], c = p2 - p1; If[c >= 6, found = 0; Do[If[PrimeQ[c - i] && PrimeQ[c + 6 - i], found = 1], {i, 1, 5, 2}]; If[found == 1, ct++]]]]; ct, {n, 1, 100}]

Extensions

Edited by Wolfdieter Lang, Feb 20 2015