This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254731 #14 Jun 16 2017 02:48:48 %S A254731 4,8,24,20,32,68,48,72,116,88,104,140,188,160,284,272,268,320,372,352, %T A254731 496,488,524,608,556,628,692,820,764,808,864,976,1024,920,1032,1228, %U A254731 1188,1256,1408,1496,1488,1564,1584,1712,1752,1708,1888,2148,2040,2100,2308,2392,2544,2480,2760,2752,2764,3064,3020,2976,3516,3440,3560,3580,3804,3816,3916,4236,4492,4340,4516,4512,4984,4764,5004,4880,5116,5716,5540,5560,5564,5840,6200,6368,6280,6668,6880,6908,6960,7600,7388,7396,8028,7832,8332,8152,8268,8928,8708,9144 %N A254731 Number of ON cells in the even-rule cellular automaton after n steps with the Moore neighborhood (8 neighbors), with minimal nontrivial symmetric initial state (0,0), (0,1), (1,0), and (1,1) ON. %C A254731 The rule turns a cell to ON at step n if an even, nonzero number of its eight neighbors were ON in the previous. For example, at n=2 the cell (0,0) is ON because the two neighbors (-1,0) and (0,-1) and no others were ON at the previous step. %C A254731 It appears that whenever n is divisible by 3, there is a visible disjoint 2x2 square leading the automaton in each cardinal direction. %H A254731 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %e A254731 For n=3, the configuration includes the initial four ON cells plus four other 2 X 2 squares in each cardinal direction. %t A254731 m = 100; n = 2 m + 1; %t A254731 A = Table[0, {p, 1, m}, {q, 1, n}, {z, 1, n}]; %t A254731 A[[1, m, m + 1]] = 1; %t A254731 A[[1, m, m]] = 1; %t A254731 A[[1, m + 1, m + 1]] = 1; %t A254731 A[[1, m + 1, m]] = 1; %t A254731 For[i = 2, i <= m, i++, %t A254731 For[x = 2, x <= n - 1, x++, %t A254731 For[y = 2, y <= n - 1, y++, %t A254731 sum = A[[i - 1, x - 1, y - 1]] + %t A254731 A[[i - 1, x, y - 1]] + %t A254731 A[[i - 1, x + 1, y - 1]] + %t A254731 A[[i - 1, x - 1, y]] + %t A254731 A[[i - 1, x + 1, y]] + %t A254731 A[[i - 1, x - 1, y + 1]] + %t A254731 A[[i - 1, x, y + 1]] + %t A254731 A[[i - 1, x + 1, y + 1]]; %t A254731 A[[i, x, y]] = If[sum > 0, 1 - Mod[sum, 2], 0]; %t A254731 ] %t A254731 ] %t A254731 ]; %t A254731 Table[Plus @@ Plus @@ A[[i, All, All]], {i, 1, m}] %t A254731 (* _Kellen Myers_, Feb 07 2015 *) %Y A254731 Cf. A160239. %K A254731 nonn %O A254731 0,1 %A A254731 _Kellen Myers_, Feb 06 2015