A254748 Numbers without superdivisors: numbers n such that n/k + n fails to divide at least one of (n/k)^(n/k) + n, (n/k)^n + n/k or n^(n/k) + n/k for any divisor k of n.
2, 4, 6, 8, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 38, 40, 42, 44, 48, 50, 52, 54, 56, 60, 62, 64, 66, 68, 72, 74, 80, 84, 86, 88, 90, 92, 96, 98, 100, 102, 104, 108, 110, 112, 114, 120, 122, 124, 126, 128, 132, 134, 138, 140, 144, 146, 148, 150, 152, 158, 160, 164, 168, 170, 172, 174
Offset: 1
Examples
2 is in this sequence because 2/1 + 2 does not divide (2/1)^(2/1) + 2, (2/1)^2 + 2/1, 2^(2/1) + 2/1 and 2/2 + 2 does not divide (2/2)^(2/2) + 2, (2/2)^2 + 2/2, 2^(2/2) + 2/2: 4 does not divide 6, 6, 6 and 3 does not divide 3, 2, 3.
Links
- Michael De Vlieger and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 3592 terms from Michael De Vlieger)
Programs
-
Mathematica
superdivisors[n_] := Select[Range@ n, And[Mod[(n/#)^(n/#) + n, n/# + n] == 0, Mod[(n/#)^n + n/#, n/# + n] == 0, Mod[n^(n/#) + n/#, n/# + n] == 0] &] /. {} -> 0; Position[Array[superdivisors, 174], 0] // Flatten (* Michael De Vlieger, Feb 09 2015 *)
-
PARI
is(n)=fordiv(n,d,my(m=n/d,k=d+n); if(Mod(d,k)^d==-n && Mod(d,k)^n==-d && Mod(n,k)^d==-d, return(0))); 1 \\ Charles R Greathouse IV, Feb 19 2015
Comments