This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254751 #33 Feb 13 2024 16:03:36 %S A254751 22,23,25,27,32,33,35,37,52,53,55,57,72,73,75,77,237,297,313,317,373, %T A254751 537,597,713,717,737,797,2337,2397,2937,3113,3137,3173,3797,5937,5997, %U A254751 7197,7337,7397,29397,31373,37937,59397,73313,739397 %N A254751 Numbers such that, in base 10, all their proper prefixes and suffixes represent primes. %C A254751 A proper prefix (or suffix) of a number m is one which is neither void, nor identical to m. %C A254751 Alternative definition: Slicing the decimal expansion of a(n) in any way into two nonempty parts, each part represents a prime number. %C A254751 Every proper prefix of each member a(n) is a member of A024770, and every proper suffix is a member of A024785. Since these are finite sequences, a(n) is also finite. It has 45 members, the largest of which is 739397 and happens to be a prime. %C A254751 The sequence is a union of A254753 and A020994. %C A254751 A subsequence of A260181. - _M. F. Hasler_, Sep 16 2016 %e A254751 6 is not a member because its expansion cannot be sliced in two. %e A254751 597 is a member because (5,97,59, and 7) are all primes. %e A254751 2331 is excluded because 233 is prime, but 1 is not. - _Gordon Hamilton_, Feb 20 2015 %t A254751 fQ[n_] := (p = {2, 3, 5, 7}; If[ Union@ Join[p, {Mod[n, 10]}] != p, {False}, Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, Union@ PrimeQ@ Flatten@ Table[{FromDigits[ Take[idn, i]], FromDigits[ Take[idn, -lng + i - 1]]}, {i, lng}] == {True}]]); Select[ Range@1000000, fQ] (* _Robert G. Wilson v_, Feb 21 2015 *) %t A254751 Select[Range[10,750000],AllTrue[Flatten[Table[FromDigits/@TakeDrop[IntegerDigits[#],n],{n,IntegerLength[#]-1}]],PrimeQ]&] (* _Harvey P. Dale_, Feb 13 2024 *) %o A254751 (PARI) slicesIntoPrimes(n,b=10) = {my(k=b);if(n<b,return(0););while(n\k>0,if(!isprime(n\k)||!isprime(n%k),return(0););k*=b;);return(1);} %o A254751 (Sage) %o A254751 def breakIntoPrimes(n): %o A254751 D=n.digits() %o A254751 for i in [1..len(D)-1]: %o A254751 if not(is_prime(sum(D[i:][j]*10^j for j in range(len(D[i:])))) and is_prime(sum(D[:i][j]*10^j for j in range(len(D[:i]))))): %o A254751 return False %o A254751 else: %o A254751 continue %o A254751 return True %o A254751 [n for n in [10..1000] if breakIntoPrimes(n)] # _Tom Edgar_, Feb 20 2015 %Y A254751 Cf. A020994, A024770, A024785, A254750, A254752, A254753, A254754, A254756. %Y A254751 Cf. A260181. %K A254751 nonn,base,fini,full %O A254751 1,1 %A A254751 _Stanislav Sykora_, Feb 15 2015