A254752 Composite numbers such that, in base 10, all their proper prefixes and suffixes represent composites.
44, 46, 48, 49, 64, 66, 68, 69, 84, 86, 88, 94, 96, 98, 99, 404, 406, 408, 424, 426, 428, 444, 446, 448, 454, 456, 458, 464, 466, 468, 469, 484, 486, 488, 494, 496, 498, 604, 606, 608, 609, 624, 626, 628, 634, 636, 638, 639, 644, 646, 648, 649, 654, 656, 658, 664, 666, 668, 669, 684, 686, 688, 694, 696, 698, 699, 804, 806, 808, 814, 816, 818, 824, 826, 828
Offset: 1
Examples
6 is not a member because its expansion cannot be sliced in two. The composite 469 is a member because it is a composite and the slices (4, 69, 46, and 9) are all composites.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isComposite(n) = (n>2)&&(!isprime(n)); slicesIntoComposites(n,b=10) = {my(k=b);if(n0,if(!isComposite(n\k)||!isComposite(n%k),return(0););k*=b);return(1);} isCompositeSlicingIntoComposites(n,b=10) = isComposite(n) && slicesIntoComposites(n,b);
Comments