cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254782 Indices of centered hexagonal numbers (A003215) which are also centered pentagonal numbers (A005891).

This page as a plain text file.
%I A254782 #16 Mar 01 2022 12:41:34
%S A254782 1,11,231,5061,111101,2439151,53550211,1175665481,25811090361,
%T A254782 566668322451,12440892003551,273132955755661,5996484134620981,
%U A254782 131649518005905911,2890292911995309051,63454794545890893201,1393115187097604341361,30585079321601404616731
%N A254782 Indices of centered hexagonal numbers (A003215) which are also centered pentagonal numbers (A005891).
%C A254782 Also positive integers y in the solutions to 5*x^2 - 6*y^2 - 5*x + 6*y = 0, the corresponding values of x being A133285.
%C A254782 The numbers (as opposed to the indices) are A133141.
%H A254782 Colin Barker, <a href="/A254782/b254782.txt">Table of n, a(n) for n = 1..746</a>
%H A254782 Giovanni Lucca, <a href="http://forumgeom.fau.edu/FG2016volume16/FG2016volume16.pdf#page=423">Circle Chains Inscribed in Symmetrical Lenses and Integer Sequences</a>, Forum Geometricorum, Volume 16 (2016) 419-427.
%H A254782 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (23,-23,1).
%F A254782 a(n) = 23*a(n-1)-23*a(n-2)+a(n-3).
%F A254782 G.f.: -x*(x^2-12*x+1) / ((x-1)*(x^2-22*x+1)).
%F A254782 a(n) = 1/2+1/24*(11+2*sqrt(30))^(-n)*(6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n)). - _Colin Barker_, Mar 03 2016
%e A254782 11 is in the sequence because the 11th centered hexagonal number is 331, which is also the 12th centered pentagonal number.
%t A254782 LinearRecurrence[{23,-23,1},{1,11,231},20] (* _Harvey P. Dale_, Mar 01 2022 *)
%o A254782 (PARI) Vec(-x*(x^2-12*x+1)/((x-1)*(x^2-22*x+1)) + O(x^100))
%Y A254782 Cf. A003215, A005891, A133141, A133285.
%K A254782 nonn,easy
%O A254782 1,2
%A A254782 _Colin Barker_, Feb 07 2015