A254835 Total number of nonagons in a variant of a nonagon expansion ("side-to-side", two consecutive sides) after n iterations.
2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 133, 136, 144, 153, 161, 170, 180, 187, 197, 206, 216, 225, 233, 242, 248, 259, 269, 278, 286, 295, 305, 314, 322, 331, 341, 350, 358, 367, 377, 386, 394, 403, 413, 422, 430, 439, 449, 458, 466, 475, 485, 494, 502
Offset: 1
Keywords
Links
- Kival Ngaokrajang, Illustration of initial terms, Rare type polygons
Crossrefs
Cf. A061777 (Triangle expansion, vertex-to-vertex, 3 vertices), A179178 (Triangle expansion, side-to-side, 2 sides), A253687 (Pentagon expansion, side-to-side, 2 consecutive sides and 1 isolated side), A253688 (Pentagon expansion, vertex-to-vertex, 2 consecutive vertices and 1 isolated vertex), A253547 (Hexagon expansion, vertex-to-vertex, 2 vertices separated by 1 vertex), A253895 and A253896 (Octagon expansion).
Programs
-
PARI
{a=259;print1("2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 133, 136, 144, 153, 161, 170, 180, 187, 197, 206, 216, 225, 233, 242, 248, ",a,", "); for(n=32,100,if(Mod(n,4)==0,d=10,if(Mod(n,4)==1,d=9,if(Mod(n,4)==2, d=8, d=9)));a=a+d;print1(a,", "))}
Formula
Conjectures from Colin Barker, Feb 08 2015: (Start)
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>21.
G.f.: -x*(2*x^33 -4*x^32 +4*x^31 -6*x^30 +4*x^29 +2*x^26 -4*x^25 +4*x^24 -4*x^23 +2*x^22 -2*x^20 -4*x^19 +8*x^18 -2*x^17 +8*x^16 +2*x^15 -2*x^14 -2*x^13 -2*x^12 -2*x^11 -2*x^10 -2*x^9 -2*x^8 -2*x^7 -2*x^6 -2*x^5 -2*x^4 -x^3 -3*x^2 -2) / ((x -1)^2*(x^2 +1)).
(End)
Comments