cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254856 Indices of centered heptagonal numbers (A069099) that are also octagonal numbers (A000567).

This page as a plain text file.
%I A254856 #10 Apr 30 2019 13:03:52
%S A254856 1,2,15,40,377,1026,9775,26624,253761,691186,6587999,17944200,
%T A254856 171034201,465858002,4440301215,12094363840,115276797377,313987601826,
%U A254856 2992756430575,8151583283624,77696390397561,211627177772386,2017113393905999,5494155038798400
%N A254856 Indices of centered heptagonal numbers (A069099) that are also octagonal numbers (A000567).
%C A254856 Also positive integers y in the solutions to 6*x^2 - 7*y^2 - 4*x + 7*y - 2 = 0, the corresponding values of x being A254855.
%H A254856 Colin Barker, <a href="/A254856/b254856.txt">Table of n, a(n) for n = 1..1000</a>
%H A254856 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,26,-26,-1,1).
%F A254856 a(n) = a(n-1)+26*a(n-2)-26*a(n-3)-a(n-4)+a(n-5).
%F A254856 G.f.: x*(x^3+13*x^2-x-1) / ((x-1)*(x^4-26*x^2+1)).
%e A254856 15 is in the sequence because the 15th centered heptagonal number is 736, which is also the 16th octagonal number.
%t A254856 LinearRecurrence[{1,26,-26,-1,1},{1,2,15,40,377},30] (* _Harvey P. Dale_, Apr 30 2019 *)
%o A254856 (PARI) Vec(x*(x^3+13*x^2-x-1)/((x-1)*(x^4-26*x^2+1)) + O(x^100))
%Y A254856 Cf. A000567, A069099, A254855, A254857.
%K A254856 nonn,easy
%O A254856 1,2
%A A254856 _Colin Barker_, Feb 08 2015