This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254859 #39 Jun 07 2022 11:13:05 %S A254859 15,30,77,143,210,221,323,1001,2310,4199,5767,7429,9797,10403,11021, %T A254859 12317,20711,22499,23707,25591,28891,30030,33263,34571,36863,38021, %U A254859 46189,47053,75067,77837,79523,82861,82919,89951,95477,99221,104927,111547,116939,136891,141367,145157,146969,154433 %N A254859 Numbers that are both a sum and a product of two or more consecutive primes. %H A254859 Michael S. Branicky, <a href="/A254859/b254859.txt">Table of n, a(n) for n = 1..4381</a> (terms 1..644 from Amiram Eldar) %H A254859 Michael S. Branicky, <a href="/A254859/a254859.py.txt">Python program</a> %e A254859 15 is a term because 15 = 3 + 5 + 7 = 3*5. %e A254859 30 is a term because 30 = 13 + 17 = 2*3*5. %e A254859 77 is a term because 77 = 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 = 7*11. %t A254859 np = NextPrime; pro[n_] := Block[{e, f}, {f, e} = Transpose@ FactorInteger@ n; Length@ f > 1 && Union@ e == {1} && np@ Most@ f == Rest@ f]; seq[lim_] := Union[Reap[Block[{p = 2, q, s}, While[2 p < lim, q = np@p; s = p+q; While[s <= lim, If[pro@s, Sow@s]; q = np@q; s += q]; p = np@p]]][[2, 1]]]; seq[10^5] (* _Giovanni Resta_, May 05 2016 *) %o A254859 (Python) # see link %Y A254859 Intersection of A050936 and A097889. %K A254859 nonn,easy %O A254859 1,1 %A A254859 _Altug Alkan_, May 05 2016