cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254872 Seventh partial sums of sixth powers (A001014).

Original entry on oeis.org

1, 71, 1205, 11075, 70295, 345857, 1409387, 4962365, 15539750, 44192010, 115917118, 283828498, 654885730, 1434717550, 3002927770, 6035661334, 11699568079, 21951176425, 39988722875, 70920437325, 122735050305
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			First differences:    1, 63,  665,  3367, 11529, ... (A022522)
--------------------------------------------------------------------
The sixth powers:     1, 64,  729,  4096, 15625, ... (A001014)
--------------------------------------------------------------------
First partial sums:   1, 65,  794,  4890, 20515, ... (A000540)
Second partial sums:  1, 66,  860,  5750, 26265, ... (A101093)
Third partial sums:   1, 67,  927,  6677, 32942, ... (A254640)
Fourth partial sums:  1, 68,  995,  7672, 40614, ... (A254645)
Fifth partial sums:   1, 69, 1064,  8736, 49350, ... (A254683)
Sixth partial sums:   1, 70, 1134,  9870, 59220, ... (A254472)
Seventh partial sums: 1, 71, 1205, 11075, 70295, ... (this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[(n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n) (- 49 + 147 n^2 + 42 n^3 + 3 n^4))/51891840, {n, 21}] (* or *)
    CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^14, {x, 0, 20}], x]

Formula

G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^14.
a(n) = (n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(- 49 + 147*n^2 + 42*n^3 + 3*n^4))/51891840.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^6.