A254879 Let us denote 's' the sum of the deficient numbers in the aliquot parts of x. Sequence lists numbers x such that sigma(s)-s is equal to x.
6, 28, 54, 284, 496, 1184, 1210, 2924, 5564, 6232, 6368, 8128, 10744, 10856, 14595, 18150, 18416, 66928, 66992, 71145, 76084, 87633, 88730, 123152, 124155, 139815, 153176, 168730, 176336, 180848, 193720, 202444, 203432, 365084, 389924, 399592, 430402, 455344
Offset: 1
Keywords
Examples
Aliquot parts of 28 are 1, 2, 4, 7, 14 and they are all deficient numbers: sigma(1 + 2 + 4 + 7 + 14) = sigma(28) = 56 and 56 - 28 = 28. Aliquot parts of 18150 are 1, 2, 3, 5, 6, 10, 11, 15, 22, 25, 30, 33, 50, 55, 66, 75, 110, 121, 150, 165, 242, 275, 330, 363, 550, 605, 726, 825, 1210, 1650, 1815, 3025, 3630, 6050, 9075 and the deficient numbers are 1, 2, 3, 5,10, 11, 15, 22, 25, 33, 50, 55, 75, 110, 121, 165, 242, 275, 363, 605, 825, 1210, 1815, 3025, 9075: sigma(1 + 2 + 3 + 5 + 10 + 11 + 15 + 22 + 25 + 33 + 50 + 55 + 75 + 110 + 121 + 165 + 242 + 275 + 363 + 605 + 825 + 1210 + 1815 + 3025 + 9075) = 18138 and sigma(18138) - 18138 = 18150.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory); P:=proc(q) local a,b,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=0; for k from 1 to nops(a)-1 do if sigma(a[k])<2*a[k] then b:=b+a[k]; fi; od; if sigma(b)-b=n then print(n); fi; od; end: P(10^9);
Comments