cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254880 Let 's' denote the sum of the abundant numbers in the aliquot parts of x. Sequence lists numbers x such that sigma(s)-s is equal to x.

Original entry on oeis.org

4240, 75640, 193720, 259120, 327104, 669520, 1385480, 1613240, 2231240, 4185472, 12228352, 26373640, 35095456, 37497520, 45085240, 48211120, 62156512, 64754272, 81263920, 82228432, 84099808, 109455424, 111330208, 118899616, 118988440, 129663880, 137013536, 139367320
Offset: 1

Views

Author

Paolo P. Lava, Feb 10 2015

Keywords

Examples

			Aliquot divisors of 4240 are 1, 2, 4, 5, 8, 10, 16, 20, 40, 53, 80, 106, 212, 265, 424, 530, 848, 1060, 2120 and the abundant numbers are 20, 40, 80, 1060, 2120. Their sum is 3320 and sigma(3320) - 3320 = 4240.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]); b:=0;
    for k from 1 to nops(a)-1 do if sigma(a[k])>2*a[k]
    then b:=b+a[k]; fi; od; if sigma(b)-b=n
    then print(n); fi; od; end: P(10^9);
  • Mathematica
    seqQ[n_] := Module[{s = Total@Select[Most[Divisors[n]], DivisorSigma[1,#] > 2# &]}, s>0 && DivisorSigma[1,s] - s == n]; Select[Range[10^6], seqQ] (* Amiram Eldar, Mar 20 2019 *)

Formula

A001065(A294889(a(n))) = a(n).

Extensions

a(3) inserted and a(11)-a(28) added by Amiram Eldar, Mar 20 2019