A254880 Let 's' denote the sum of the abundant numbers in the aliquot parts of x. Sequence lists numbers x such that sigma(s)-s is equal to x.
4240, 75640, 193720, 259120, 327104, 669520, 1385480, 1613240, 2231240, 4185472, 12228352, 26373640, 35095456, 37497520, 45085240, 48211120, 62156512, 64754272, 81263920, 82228432, 84099808, 109455424, 111330208, 118899616, 118988440, 129663880, 137013536, 139367320
Offset: 1
Keywords
Examples
Aliquot divisors of 4240 are 1, 2, 4, 5, 8, 10, 16, 20, 40, 53, 80, 106, 212, 265, 424, 530, 848, 1060, 2120 and the abundant numbers are 20, 40, 80, 1060, 2120. Their sum is 3320 and sigma(3320) - 3320 = 4240.
Programs
-
Maple
with(numtheory); P:=proc(q) local a,b,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=0; for k from 1 to nops(a)-1 do if sigma(a[k])>2*a[k] then b:=b+a[k]; fi; od; if sigma(b)-b=n then print(n); fi; od; end: P(10^9);
-
Mathematica
seqQ[n_] := Module[{s = Total@Select[Most[Divisors[n]], DivisorSigma[1,#] > 2# &]}, s>0 && DivisorSigma[1,s] - s == n]; Select[Range[10^6], seqQ] (* Amiram Eldar, Mar 20 2019 *)
Extensions
a(3) inserted and a(11)-a(28) added by Amiram Eldar, Mar 20 2019