A254881 Triangle read by rows, T(n,k) = sum(j=0..k-1, S(n+1,j+1)*S(n,k-j)) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n.
1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 12, 40, 51, 31, 9, 1, 0, 144, 564, 904, 769, 376, 106, 16, 1, 0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1, 0, 86400, 408960, 840216, 991276, 748530, 381065, 133848, 32523, 5370, 575, 36, 1, 0, 3628800, 18299520
Offset: 0
Examples
[1] [0, 1, 1] [0, 2, 5, 4, 1] [0, 12, 40, 51, 31, 9, 1] [0, 144, 564, 904, 769, 376, 106, 16, 1] [0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1] For example in the case n=3 the polynomial (k^6+9*k^5+31*k^4+51*k^3+40*k^2+12*k)/3! generates the Lah numbers 0, 24, 240, 1200, 4200, 11760, 28224, ... (A253285).
Crossrefs
Programs
-
Maple
# This is a special case of the recurrence given in A246117. t := proc(n,k) option remember; if n=0 and k=0 then 1 elif k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end: A254881 := (n,k) -> t(2*n,k): seq(print(seq(A254881(n,k), k=0..2*n)), n=0..5); # Illustrating the comment: restart: with(PolynomialTools): with(CurveFitting): for N from 0 to 5 do CoefficientList(PolynomialInterpolation([seq([k,N!*((N+k)!/k!)*binomial(N+k-1,k-1)], k=0..2*N)], n), n) od;
-
Mathematica
Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n+1,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
Sage
def T(n,k): if n == 0: return 1 return sum(stirling_number1(n+1,j+1)*stirling_number1(n,k-j) for j in range(k)) for n in range (6): [T(n,k) for k in (0..2*n)]
Formula
T(n, n) = A187235(n) for n>=1 (after the explicit formula of Vaclav Kotesovec).
Comments