cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254881 Triangle read by rows, T(n,k) = sum(j=0..k-1, S(n+1,j+1)*S(n,k-j)) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 5, 4, 1, 0, 12, 40, 51, 31, 9, 1, 0, 144, 564, 904, 769, 376, 106, 16, 1, 0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1, 0, 86400, 408960, 840216, 991276, 748530, 381065, 133848, 32523, 5370, 575, 36, 1, 0, 3628800, 18299520
Offset: 0

Views

Author

Peter Luschny, Feb 10 2015

Keywords

Comments

These are also the coefficients of the polynomials interpolating the sequence k -> n!*((n+k)!/k!)*binomial(n+k-1,k-1) (for fixed n>=0). Divided by n! these polynomials generate the rows of Lah numbers L(n+k, k) = ((n+k)!/k!)* binomial(n+k-1,k-1).

Examples

			[1]
[0, 1, 1]
[0, 2, 5, 4, 1]
[0, 12, 40, 51, 31, 9, 1]
[0, 144, 564, 904, 769, 376, 106, 16, 1]
[0, 2880, 12576, 23300, 24080, 15345, 6273, 1650, 270, 25, 1]
For example in the case n=3 the polynomial (k^6+9*k^5+31*k^4+51*k^3+40*k^2+12*k)/3! generates the Lah numbers 0, 24, 240, 1200, 4200, 11760, 28224, ... (A253285).
		

Crossrefs

The sequences A000012, A002378, A083374, A253285 are the Lah number rows generated by the polynomials divided by n! for n=0, 1, 2, 3 respectivly.

Programs

  • Maple
    # This is a special case of the recurrence given in A246117.
    t := proc(n,k) option remember; if n=0 and k=0 then 1 elif
    k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end:
    A254881 := (n,k) -> t(2*n,k):
    seq(print(seq(A254881(n,k), k=0..2*n)), n=0..5);
    # Illustrating the comment:
    restart: with(PolynomialTools): with(CurveFitting): for N from 0 to 5 do
    CoefficientList(PolynomialInterpolation([seq([k,N!*((N+k)!/k!)*binomial(N+k-1,k-1)], k=0..2*N)], n), n) od;
  • Mathematica
    Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n+1,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • Sage
    def T(n,k):
        if n == 0: return 1
        return sum(stirling_number1(n+1,j+1)*stirling_number1(n,k-j) for j in range(k))
    for n in range (6): [T(n,k) for k in (0..2*n)]

Formula

T(n, n) = A187235(n) for n>=1 (after the explicit formula of Vaclav Kotesovec).