cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254882 Triangle read by rows, T(n,k) = Sum_{j=0..k-1} S(n,j+1)*S(n,k-j) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n-1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 1, 0, 4, 12, 13, 6, 1, 0, 36, 132, 193, 144, 58, 12, 1, 0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1, 0, 14400, 65760, 129076, 143700, 100805, 46710, 14523, 3000, 395, 30, 1, 0, 518400, 2540160, 5450256, 6787872, 5482456, 3034920, 1184153
Offset: 0

Views

Author

Peter Luschny, Feb 10 2015

Keywords

Examples

			[1]
[0, 1]
[0, 1, 2, 1]
[0, 4, 12, 13, 6, 1]
[0, 36, 132, 193, 144, 58, 12, 1]
[0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1]
		

Crossrefs

Programs

  • Maple
    a := n -> (x^n*pochhammer(1+1/x,n))^2:
    c := (n,k) -> coeff(expand(a(n)),x,n-k):
    for n from 0 to 5 do: `if`(n=0,[1],[seq(c(n-1,k),k=-n..n-1)]) od;
    # Second program, a special case of the recurrence given in A246117:
    t := proc(n,k) option remember; if n=0 and k=0 then 1 elif
    k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end:
    A254882 := (n,k) -> `if`(n=0,1,t(2*n-1,k)):
    seq(print(seq(A254882(n,k), k=0..max(0,2*n-1))), n=0..5);
  • Mathematica
    Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n-1}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • Sage
    def A254882(n,k):
        if n == 0: return 1
        return sum(stirling_number1(n,j+1)*stirling_number1(n,k-j) for j in range(k))
    for n in range (5): [A254882(n,k) for k in (0..max(0,2*n-1))]

Formula

T(n+1, n+1) = A129256(n) for n>=0.