A254882 Triangle read by rows, T(n,k) = Sum_{j=0..k-1} S(n,j+1)*S(n,k-j) where S denotes the Stirling cycle numbers A132393, T(0,0)=1, n>=0, 0<=k<=2n-1.
1, 0, 1, 0, 1, 2, 1, 0, 4, 12, 13, 6, 1, 0, 36, 132, 193, 144, 58, 12, 1, 0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1, 0, 14400, 65760, 129076, 143700, 100805, 46710, 14523, 3000, 395, 30, 1, 0, 518400, 2540160, 5450256, 6787872, 5482456, 3034920, 1184153
Offset: 0
Examples
[1] [0, 1] [0, 1, 2, 1] [0, 4, 12, 13, 6, 1] [0, 36, 132, 193, 144, 58, 12, 1] [0, 576, 2400, 4180, 3980, 2273, 800, 170, 20, 1]
Programs
-
Maple
a := n -> (x^n*pochhammer(1+1/x,n))^2: c := (n,k) -> coeff(expand(a(n)),x,n-k): for n from 0 to 5 do: `if`(n=0,[1],[seq(c(n-1,k),k=-n..n-1)]) od; # Second program, a special case of the recurrence given in A246117: t := proc(n,k) option remember; if n=0 and k=0 then 1 elif k <= 0 or k>n then 0 else iquo(n,2)*t(n-1,k)+t(n-1,k-1) fi end: A254882 := (n,k) -> `if`(n=0,1,t(2*n-1,k)): seq(print(seq(A254882(n,k), k=0..max(0,2*n-1))), n=0..5);
-
Mathematica
Flatten[{1,Table[Table[Sum[Abs[StirlingS1[n,j+1]] * Abs[StirlingS1[n,k-j]],{j,0,k-1}],{k,0,2*n-1}],{n,1,10}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
-
Sage
def A254882(n,k): if n == 0: return 1 return sum(stirling_number1(n,j+1)*stirling_number1(n,k-j) for j in range(k)) for n in range (5): [A254882(n,k) for k in (0..max(0,2*n-1))]
Formula
T(n+1, n+1) = A129256(n) for n>=0.