A254936 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n >= 1 (primes congruent to 1 mod 8).
9, 11, 13, 19, 25, 15, 21, 23, 35, 41, 25, 21, 37, 49, 23, 39, 29, 25, 57, 35, 27, 59, 65, 33, 43, 29, 49, 55, 51, 41, 37, 69, 81, 39, 59, 35, 65, 71, 77, 83, 51, 67, 47, 43, 79, 39, 97, 69, 49, 59, 41, 87, 93, 61, 47, 57, 89, 53, 101, 79, 59, 85, 55, 91, 103, 81, 115, 53, 49, 63, 83, 73, 111, 59
Offset: 1
Examples
The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007519(n) appears as first entry): [17, [9, 7]], [41, [11, 9]], [73, [13, 11]], [89, [19, 15]], [97, [25, 19]], [113, [15, 13]], [137, [21, 17]], [193, [23, 19]], [233, [35, 27]], [241, [41, 31]], [257, [25, 21]], [281, [21, 19]], [313, [37, 29]], [337, [49, 37]], [353, [23, 21]], [401, [39, 31]], [409, [29, 25]], [433, [25, 23]], [449, [57, 43]], [457, [35, 29]], [521, [27, 25]], [569, [59, 45]], [577, [65, 49]], [593, [33, 29]], [601, [43, 35]], [617, [29, 27]], [641, [49, 39]], ... a(4) = -(3*3 - 4*7) = 28 - 9 = 19.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000, May 22 2025
Crossrefs
Programs
-
PARI
apply( {A254936(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
Formula
Extensions
More terms from M. F. Hasler, May 22 2025
Comments