A254958 Zeroless numbers n with digits d_1, d_2, ... d_k such that d_1^2 + ... + d_k^2 is a square.
1, 2, 3, 4, 5, 6, 7, 8, 9, 34, 43, 68, 86, 122, 148, 184, 212, 221, 236, 244, 263, 269, 296, 326, 362, 366, 418, 424, 442, 447, 474, 481, 488, 623, 629, 632, 636, 663, 667, 676, 692, 744, 766, 814, 841, 848, 884, 926, 962, 1111, 1135, 1153, 1177, 1224, 1242, 1315, 1339, 1351, 1393, 1422, 1444, 1513, 1531, 1557
Offset: 1
Links
- Jonathan Schwartz, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[1557], (d = IntegerDigits[#]; Min[d] > 0 && IntegerQ@ Sqrt@ Total[d^2]) &] (* Giovanni Resta, Aug 14 2017 *)
-
PARI
for(n=1,2000,d=digits(n);if(vecsort(d,,8)[1],s=0;for(i=1,#d,s+=d[i]^2);if(issquare(s),print1(n,", "))))
Comments