cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254965 Indices of centered hexagonal numbers (A003215) that are also heptagonal numbers (A000566).

This page as a plain text file.
%I A254965 #6 Jun 13 2015 00:55:25
%S A254965 1,2,13,34,275,736,6027,16148,132309,354510,2904761,7783062,63772423,
%T A254965 170872844,1400088535,3751419496,30738175337,82360356058,674839768869,
%U A254965 1808176413770,14815736739771,39697520746872,325271368506083,871537280017404,7141154370394045
%N A254965 Indices of centered hexagonal numbers (A003215) that are also heptagonal numbers (A000566).
%C A254965 Also positive integers y in the solutions to 5*x^2 - 6*y^2 - 3*x + 6*y - 2 = 0, the corresponding values of x being A254964.
%H A254965 Colin Barker, <a href="/A254965/b254965.txt">Table of n, a(n) for n = 1..1000</a>
%H A254965 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,22,-22,-1,1).
%F A254965 a(n) = a(n-1)+22*a(n-2)-22*a(n-3)-a(n-4)+a(n-5).
%F A254965 G.f.: x*(x^3+11*x^2-x-1) / ((x-1)*(x^4-22*x^2+1)).
%e A254965 13 is in the sequence because the 13th centered hexagonal number is 469, which is also the 14th heptagonal number.
%o A254965 (PARI) Vec(x*(x^3+11*x^2-x-1)/((x-1)*(x^4-22*x^2+1)) + O(x^100))
%Y A254965 Cf. A000566, A003215, A254964, A254966.
%K A254965 nonn,easy
%O A254965 1,2
%A A254965 _Colin Barker_, Feb 11 2015