This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254967 #19 Feb 16 2025 08:33:24 %S A254967 1,2,3,2,4,7,0,2,2,9,0,0,2,4,13,0,0,0,2,2,15,2,2,2,2,4,6,21,2,0,2,0,2, %T A254967 2,4,25,2,0,0,2,2,0,2,6,31,0,2,2,2,0,2,2,4,2,33,0,0,2,0,2,2,0,2,2,4, %U A254967 37,0,0,0,2,2,0,2,2,0,2,6,43,2,2,2,2,0,2 %N A254967 Triangle of iterated absolute differences of lucky numbers read by antidiagonals upwards. %C A254967 This sequence is related to the lucky numbers (cf. A000959) in the same way as A036262 is related to the prime numbers; %H A254967 Reinhard Zumkeller, <a href="/A254967/b254967.txt">Rows n = 0..125 of triangle, flattened</a> %H A254967 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LuckyNumber.html">Lucky number.</a> %H A254967 Wikipedia, <a href="http://en.wikipedia.org/wiki/Lucky_number">Lucky number</a> %F A254967 T(n,0) = A054978(n). %F A254967 T(2*n,n) = A254969(n). %F A254967 T(n,n-1) = A031883(n) for n > 0. %F A254967 T(n,n) = A000959(n+1). %F A254967 T(n,k) = abs(T(n,k+1) - T(n-1,k)) for 0 <= k < n. %e A254967 . 0: 1 %e A254967 . 1: 2 3 %e A254967 . 2: 2 4 7 %e A254967 . 3: 0 2 2 9 %e A254967 . 4: 0 0 2 4 13 %e A254967 . 5: 0 0 0 2 2 15 %e A254967 . 6: 2 2 2 2 4 6 21 %e A254967 . 7: 2 0 2 0 2 2 4 25 %e A254967 . 8: 2 0 0 2 2 0 2 6 31 %e A254967 . 9: 0 2 2 2 0 2 2 4 2 33 %e A254967 . 10: 0 0 2 0 2 2 0 2 2 4 37 %e A254967 . 11: 0 0 0 2 2 0 2 2 0 2 6 43 %e A254967 . 12: 2 2 2 2 0 2 2 0 2 2 0 6 49 %e A254967 . 13: 0 2 0 2 0 0 2 0 0 2 4 4 2 51 . %t A254967 nmax = 13; (* max index for triangle rows *) %t A254967 imax = 25; (* max index for initial lucky array L *) %t A254967 L = Table[2i + 1, {i, 0, imax}]; %t A254967 For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]]; %t A254967 T[n_, n_] := If[n+1 <= Length[L], L[[n+1]], Print["imax should be increased"]; 0]; %t A254967 T[n_, k_] := T[n, k] = Abs[T[n, k+1] - T[n-1, k]]; %t A254967 Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 22 2021 *) %o A254967 (Haskell) %o A254967 a254967 n k = a254967_tabl !! n !! k %o A254967 a254967_row n = a254967_tabl !! n %o A254967 a254967_tabl = diags [] $ %o A254967 iterate (\lds -> map abs $ zipWith (-) (tail lds) lds) a000959_list %o A254967 where diags uss (vs:vss) = (map head wss) : diags (map tail wss) vss %o A254967 where wss = vs : uss %Y A254967 Cf. A054978 (left edge), A254969 (central terms), A000959 (right edge), A031883, A036262. %K A254967 nonn,tabl %O A254967 0,2 %A A254967 _Reinhard Zumkeller_, Feb 11 2015