This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A254990 #25 Jan 05 2025 19:51:40 %S A254990 0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,1,0,2,0, %T A254990 1,0,3,0,1,0,2,0,1,0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,2,0,1,0,3,0,1,0,2, %U A254990 0,1,0,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,0,1,0,2,0,1,0,3 %N A254990 4-bonacci word. Fixed point of morphism 0->01, 1->02, 2->03, 3->0. %C A254990 Special case of k-bonacci word for k = 4 (see crossrefs). %C A254990 The lengths of iterations S(i) are Tetranacci numbers (A000078). %C A254990 Set S(0) = 0; S(1) = 0,1; S(2) = 0,1,0,2; S(3) = 0,1,0,2,0,1,0,3; for n >= 4: S(n) = S(n-1) S(n-2) S(n-3) S(n-4). The sequence is the limit S(infinity). %H A254990 Seiichi Manyama, <a href="/A254990/b254990.txt">Table of n, a(n) for n = 0..10000</a> %H A254990 Elena Barcucci, Luc Belanger and Srecko Brlek, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/42-4/quartbarcucci04_2004.pdf">On tribonacci sequences</a>, Fib. Q., 42 (2004), 314-320. See Section 4. %H A254990 F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1. %H A254990 O. Turek, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html">Abelian Complexity Function of the Tribonacci Word</a>, J. Int. Seq. 18 (2015) # 15.3.4 %e A254990 The iterates are: %e A254990 0 %e A254990 01 %e A254990 0102 %e A254990 01020103 %e A254990 010201030102010 %e A254990 01020103010201001020103010201 %e A254990 01020103010201001020103010201010201030102010010201030102 %e A254990 ... %t A254990 Nest[Flatten[#/.{0->{0,1},1->{0,2},2->{0,3},3->0}]&,0,7] (* _Harvey P. Dale_, Mar 26 2015 *) %Y A254990 Cf. A000078 (lengths of iterations). %Y A254990 Cf. A003849 (k=2, Fibonacci word), A080843 (k=3, Tribonacci word). %Y A254990 Cf. A316837, A316838, A316839, A316840. %K A254990 nonn,easy %O A254990 0,4 %A A254990 _Ondrej Turek_, Feb 11 2015