cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254999 Numbers n of the form 4*k+2 such that (sigma(n) mod n) divides n, where sigma is given by A000203.

Original entry on oeis.org

2, 18, 234, 650, 1890, 8190, 14850, 61110, 64890, 92070, 157950, 162162, 206910, 258390, 365310, 383130, 558558, 702702, 711450, 743850, 822510, 916110, 1140750, 1561950, 1862190, 2357550, 4977126, 5782590
Offset: 1

Views

Author

J. M. Bergot, Feb 11 2015

Keywords

Comments

Data provided by Charles R Greathouse IV.

Examples

			234 = 4*58 + 2, sigma(234) = A000203(234) = 546, 546 mod 234 = 78, and 78 divides 546, so 234 is in the list.
		

Crossrefs

Programs

  • Maple
    for n from 2 by 4 do
        m := numtheory[sigma](n) mod n ;
        if m <> 0 and modp(n,m) = 0 then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Feb 13 2015
  • PARI
    select(n->my(s=sigma(n)%n); s && n%s==0, vector(1000,n,4*n-2)) \\ Charles R Greathouse IV, Mar 17 2015
  • Python
    from sympy import factorint
    def sigma_mod(n, m): # computes sigma(n) mod m
        y = 1
        for p, e in factorint(n).items():
            y  = (y*(p**(e + 1) - 1)//(p - 1)) % m
        return y
    A254999_list = [n for n,m in ((4*k+2, sigma_mod(4*k+2,4*k+2)) for k in range(10**6)) if m and not n % m]
    # Chai Wah Wu, Mar 01 2015
    
  • Sage
    [4*k+2 for k in [0..600000] if sigma(4*k+2)%(4*k+2)!=0 and (4*k+2)%(sigma(4*k+2)%(4*k+2))==0] # Tom Edgar, Feb 12 2015