cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255001 Number of partitions of 4n into distinct parts with equal sums of odd and even parts.

This page as a plain text file.
%I A255001 #17 Dec 11 2020 04:03:53
%S A255001 1,0,1,2,4,6,12,15,30,40,70,96,165,216,352,486,736,988,1518,1998,2944,
%T A255001 3952,5607,7488,10614,13916,19305,25536,34854,45568,61864,80240,
%U A255001 107640,139776,184832,238680,314628,402800,526176,673652,872592,1110060,1431704
%N A255001 Number of partitions of 4n into distinct parts with equal sums of odd and even parts.
%H A255001 Alois P. Heinz, <a href="/A255001/b255001.txt">Table of n, a(n) for n = 0..1000</a>
%F A255001 a(n) = A000009(n) * A069910(n) = A000009(n) * A000700(2n).
%F A255001 a(n) ~ exp(2*Pi*sqrt(n/3)) / (16*sqrt(6)*n^(3/2)). - _Vaclav Kotesovec_, Dec 11 2020
%e A255001 a(0) = 1: [], the empty partition.
%e A255001 a(1) = 0.
%e A255001 a(2) = 1: [4,3,1].
%e A255001 a(3) = 2: [6,5,1], [5,4,2,1].
%e A255001 a(4) = 4: [8,7,1], [8,5,3], [7,6,2,1], [6,5,3,2].
%p A255001 g:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,
%p A255001      `if`(n=0, 1, g(n, i-1)+`if`(i>n, 0, g(n-i, i-1))))
%p A255001     end:
%p A255001 b:= proc(n, i) option remember; `if`(n=0, 1,
%p A255001      `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i-2))))
%p A255001     end:
%p A255001 a:= n-> g(n$2)*b(2*n, 2*n-1):
%p A255001 seq(a(n), n=0..50);
%t A255001 g[n_, i_] := g[n, i] = If[i(i+1)/2 < n, 0, If[n == 0, 1, g[n, i - 1] + If[i > n, 0, g[n - i, i - 1]]]];
%t A255001 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 2] + If[i > n, 0, b[n - i, i - 2]]]];
%t A255001 a[n_] := g[n, n] b[2n, 2n-1];
%t A255001 a /@ Range[0, 50] (* _Jean-François Alcover_, Dec 11 2020, after _Alois P. Heinz_ *)
%Y A255001 Cf. A000009, A000700, A069910, A239241, A249914.
%K A255001 nonn
%O A255001 0,4
%A A255001 _Alois P. Heinz_, Feb 11 2015