cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255008 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the numerator of polygamma(n, 1) - polygamma(n, k).

This page as a plain text file.
%I A255008 #12 Feb 16 2025 08:33:24
%S A255008 0,0,-1,0,1,-3,0,-2,5,-11,0,6,-9,49,-25,0,-24,51,-251,205,-137,0,120,
%T A255008 -99,1393,-2035,5269,-49,0,-720,975,-8051,22369,-256103,5369,-363,0,
%U A255008 5040,-5805,237245,-257875,14001361,-28567,266681,-761,0,-40320
%N A255008 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the numerator of polygamma(n, 1) - polygamma(n, k).
%C A255008 Up to signs, row n=0 is A001008/A002805, row n=1 is A007406/A007407 and column k=1 is n!.
%H A255008 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>.
%H A255008 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PolygammaFunction.html">Polygamma Function</a>.
%H A255008 Wikipedia, <a href="http://en.wikipedia.org/wiki/Polygamma_function">Polygamma Function</a>.
%F A255008 Fraction giving T(n,k) = polygamma(n, 1) - polygamma(n, k) = (-1)^(n+1)*n! * sum_{j=1..k-1} 1/j^(n+1) = (-1)^(n+1)*n!*H(k-1, n+1), where H(n,r) gives the n-th harmonic number of order r.
%e A255008 Array of fractions begin:
%e A255008 0,  -1,  -3/2,       -11/6,          -25/12,               -137/60, ...
%e A255008 0,   1,   5/4,       49/36,         205/144,             5269/3600, ...
%e A255008 0,  -2,  -9/4,    -251/108,       -2035/864,        -256103/108000, ...
%e A255008 0,   6,  51/8,    1393/216,      22369/3456,      14001361/2160000, ...
%e A255008 0, -24, -99/4,   -8051/324,   -257875/10368,   -806108207/32400000, ...
%e A255008 0, 120, 975/8, 237245/1944, 15187325/124416, 47463376609/388800000, ...
%e A255008 ...
%t A255008 T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Numerator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten
%Y A255008 Cf. A001008, A002805, A007406, A007407, A255006, A255007, A255009 (denominators).
%K A255008 sign,frac,tabl,easy
%O A255008 0,6
%A A255008 _Jean-François Alcover_, Feb 12 2015