cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255011 Number of polygons formed by connecting all the 4n points on the perimeter of an n X n square by straight lines; a(0) = 0 by convention.

This page as a plain text file.
%I A255011 #101 Aug 09 2025 19:38:58
%S A255011 0,4,56,340,1120,3264,6264,13968,22904,38748,58256,95656,120960,
%T A255011 192636,246824,323560,425408,587964,682296,932996,1061232,1327524,
%U A255011 1634488,2049704,2227672,2806036,3275800,3810088,4307520,5298768,5577096,6958848,7586496,8672520,9901352
%N A255011 Number of polygons formed by connecting all the 4n points on the perimeter of an n X n square by straight lines; a(0) = 0 by convention.
%C A255011 There are n+1 points on each side of the square, but that counts the four corners twice, so there are a total of 4n points on the perimeter. - _N. J. A. Sloane_, Jan 23 2020
%C A255011 a(n) is always divisible by 4, by symmetry. If n is odd, a(n) is divisible by 8.
%C A255011 From _Michael De Vlieger_, Feb 19-20 2015: (Start)
%C A255011 For n > 0, the vertices of the bounding square generate diametrical bisectors that cross at the center. Thus each diagram has fourfold symmetry.
%C A255011 For n > 0, an orthogonal n X n grid is produced by corresponding horizontal and vertical points on opposite sides.
%C A255011 Terms {1, 3, 9} are not congruent to 0 (mod 8).
%C A255011 Number of edges: {0, 8, 92, 596, 1936, 6020, 11088, 26260, 42144, 72296, 107832, ...}. See A331448. (End)
%H A255011 Zhao Hui Du, <a href="/A255011/b255011.txt">Table of n, a(n) for n = 0..136</a> (terms 0..52 from Lars Blomberg).
%H A255011 Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, <a href="http://neilsloane.com/doc/rose_5.pdf">Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids</a>, (2021); Also on <a href="https://arxiv.org/abs/2009.07918">arXiv</a>, arXiv:2009.07918 [math.CO], 2020.
%H A255011 Michael De Vlieger, <a href="/A255011/a255011.pdf">Diagrams of A255011(n) for n <= 10</a>
%H A255011 B. Poonen and M. Rubinstein (1998) <a href="http://math.mit.edu/~poonen/papers/ngon.pdf">The Number of Intersection Points Made by the Diagonals of a Regular Polygon</a>, SIAM J. Discrete Mathematics 11(1), pp. 135-156, doi:<a href="http://dx.doi.org/10.1137/S0895480195281246">10.1137/S0895480195281246</a>, arXiv:<a href="http://arXiv.org/abs/math.MG/9508209">math.MG/9508209</a> (has fewer typos than the SIAM version)
%H A255011 Scott R. Shannon, <a href="/A331452/a331452_6.png">Colored illustration for a(1)</a>
%H A255011 Scott R. Shannon, <a href="/A331452/a331452_12.png">Colored illustration for a(2)</a>
%H A255011 Scott R. Shannon, <a href="/A331452/a331452_1.png">Colored illustration for a(3)</a>
%H A255011 Scott R. Shannon, <a href="/A331452/a331452_21.png">Colored illustration for a(4)</a>
%H A255011 Scott R. Shannon, <a href="/A331452/a331452_24.png">Colored illustration for a(5)</a>
%H A255011 Scott R. Shannon, <a href="/A255011/a255011.png">Image for n = 2</a>.
%H A255011 Scott R. Shannon, <a href="/A255011/a255011_1.png">Image for n = 3</a>.
%H A255011 Scott R. Shannon, <a href="/A255011/a255011_2.png">Image for n = 4</a>.
%H A255011 Scott R. Shannon, <a href="/A255011/a255011_3.png">Image for n = 5</a>.
%H A255011 Scott R. Shannon, <a href="/A255011/a255011_4.png">Image for n = 10</a>.
%H A255011 N. J. A. Sloane, <a href="https://arxiv.org/abs/2301.03149">"A Handbook of Integer Sequences" Fifty Years Later</a>, arXiv:2301.03149 [math.NT], 2023, p. 20.
%F A255011 No formula is presently known. - _N. J. A. Sloane_, Feb 04 2020
%e A255011 For n = 3, the perimeter of the square contains 12 points:
%e A255011   * * * *
%e A255011   *     *
%e A255011   *     *
%e A255011   * * * *
%e A255011 Connect each point to every other point with a straight line inside the square. Then count the polygons (or regions) that have formed. There are 340 polygons, so a(3) = 340.
%e A255011 For n = 1, the full picture is:
%e A255011   *-*
%e A255011   |X|
%e A255011   *-*
%e A255011 The lines form four triangular regions, so a(1) = 4.
%e A255011 For n = 0, the square can be regarded as consisting of a single point, producing no lines or polygons, and so a(0) = 0.
%Y A255011 Cf. A092098 (triangular analog), A331448 (edges), A331449 (points), A334699 (k-gons).
%Y A255011 For the circular analog see A006533, A007678.
%K A255011 nonn
%O A255011 0,2
%A A255011 _Johan Westin_, Feb 12 2015
%E A255011 a(11)-a(29) from _Hiroaki Yamanouchi_, Feb 23 2015
%E A255011 Offset changed by _N. J. A. Sloane_, Jan 23 2020