cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255014 Abelian complexity function of the 4-bonacci word (A254990).

This page as a plain text file.
%I A255014 #30 Feb 22 2020 20:54:24
%S A255014 4,4,6,4,7,6,7,4,7,7,8,6,8,7,7,4,7,7,8,7,8,8,7,7,8,8,7,8,7,7,4,7,7,8,
%T A255014 7,8,8,8,7,8,8,8,8,7,7,7,7,8,8,8,8,7,8,8,8,7,8,7,7,4,7,8,9,7,8,9,9,7,
%U A255014 8,10,10,8,8,8,8,7,9,10,9,8,9,9,8,8,9,10,7,8,7,8,7,8,9,9,8,8,8,8,8,7
%N A255014 Abelian complexity function of the 4-bonacci word (A254990).
%C A255014 For all n, a(n) either equals 4 or belongs to {6,7,...,16}; value 5 is never attained.
%C A255014 a(n)=4 if and only if n = T(k)+T(k-4)+T(k-8)+T(k-12)+...+T(4+(k mod 4)) for a certain k>=4, where T(i) are tetranacci numbers A000078.
%C A255014 a(n)=6 only for n = 3,6,12.
%C A255014 Each value from the set {7,8,...,16} is attained infinitely often.
%H A255014 K. Brinda, <a href="http://brinda.cz/publications/kb_bach.pdf">Abelian complexity of infinite words</a>, bachelor thesis, Czech Technical University in Prague, 2011.
%H A255014 K. Brinda, <a href="http://brinda.cz/publications/vyzkumak.pdf">Abelian complexity of infinite words and Abelian return words</a>, Research project, Czech Technical University in Prague, 2012.
%H A255014 F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
%H A255014 O. Turek, <a href="http://arxiv.org/abs/1309.4810">Abelian complexity function of the Tribonacci word</a>, arXiv:1309.4810 [math.CO], 2013.
%H A255014 O. Turek, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Turek/turek3.html">Abelian complexity function of the Tribonacci word</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.4.
%e A255014 From _Wolfdieter Lang_, Mar 26 2015: (Start)
%e A255014 a(1) = 4 because the one letter factor words of A254990 are 0, 1, 2, 3 with the set of occurrence tuples (Parikh vectors) {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} of cardinality 4. See the Turek links.
%e A255014 a(2) = 4 because the set of occurrence tuples for the two letter factors 00, 01, 10, 02, 20, 03, 30 of A254990 is {(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} of cardinality 4. (End)
%Y A255014 Cf. A000078 (tetranacci numbers).
%Y A255014 Cf. A216190 (abelian complexity of tribonacci word), A254990 (4-bonacci word).
%K A255014 nonn
%O A255014 1,1
%A A255014 _Ondrej Turek_, Feb 12 2015