A255073 Primes that remain prime after each digit is replaced by the power of its position.
2, 3, 5, 7, 11, 13, 17, 19, 23, 37, 43, 47, 67, 71, 79, 83, 101, 103, 107, 109, 113, 131, 137, 139, 167, 173, 179, 191, 211, 241, 263, 269, 281, 307, 311, 313, 331, 337, 353, 359, 367, 397, 431, 479, 491, 503, 521, 577, 593, 601, 613, 617, 659, 673
Offset: 1
Examples
p = 2 -> (2^1) -> 2 (prime). p = 23 -> (2^2)&(3^1) -> 43 (prime). p = 337 -> (3^3)&(3^2)&(7^1) -> 2797 (prime).
Links
- Abhiram R Devesh, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := Block[{d = Reverse@ IntegerDigits@ n, k}, FromDigits[Reap@ For[k = 1, k <= Length@ d, k++, Sow[d[[k]]^k]] // Flatten // Rest // Reverse // IntegerDigits // Flatten]]; Select[Prime@ Range@ 125, PrimeQ[f@ #] &] (* Michael De Vlieger, Apr 02 2015 *)
-
Python
import sympy def powdig(m): l=len(str(m)) return(int(''.join([str(int(list(i)[1])**(l-list(i)[0])) for i in enumerate(list(str(m)))]))) n=2 while n>0: t=powdig(n) if sympy.isprime(t)==True: print(n) n=sympy.nextprime(n)
Comments