This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255092 #12 Sep 25 2024 16:14:16 %S A255092 2,3,43,13,239,59,171869,569,32797,2551,649529,6133,1708984363,57331, %T A255092 103630981,65521,301327031,262127,82244873046857,11943917,38354628391, %U A255092 26214379,679922958173,37748713,584125518798828101,553648103,7625597484961,2281701349,882592301503097,8153726947 %N A255092 Least prime p such that p+n is product of (n+1) primes (with multiplicity). %C A255092 For n>0, terms with odd indices 3, 13, 59, 569... are much smaller than neighbor terms with even indices. %C A255092 For n > 0, a(n) >= A053669(n)^(n+1) - n. - _Robert Israel_, Sep 25 2024 %H A255092 Robert Israel, <a href="/A255092/b255092.txt">Table of n, a(n) for n = 0..1000</a> %e A255092 2+0=2(prime), 3+1=4=2*2, 43+2=45=3*3*5, 13+3=16=2^4, 239+4=243=3^5,59+5=64=2^6,171869+6=171875=5^6*11,569+7=574=2^6*3^2, %e A255092 32797+8=32805=3^5*5, 2551+9=2590=2^9*5, 649529+10=649539=3^10*11, 6133+11=6143=2^11*3. %p A255092 f:= proc(n) %p A255092 uses priqueue; %p A255092 local pq, t, v, p,w,i; %p A255092 initialize(pq); %p A255092 p:= 2; %p A255092 while n mod p = 0 do p:= nextprime(p) od; %p A255092 insert([-p^(n+1),[p$(n+1)]],pq); %p A255092 do %p A255092 t:= extract(pq); %p A255092 v:= -t[1]; w:= t[2]; %p A255092 if isprime(v-n) then return v-n fi; %p A255092 p:= nextprime(w[-1]); %p A255092 while n mod p = 0 do p:= nextprime(p) od: %p A255092 for i from n+1 to 1 by -1 while w[i] = w[n+1] do %p A255092 insert([t[1]*(p/w[n+1])^(n+2-i),[op(w[1..i-1]),p$(n+2-i)]],pq); %p A255092 od od %p A255092 end proc: %p A255092 f(0):= 2: %p A255092 map(f, [$0..40]); # _Robert Israel_, Sep 25 2024 %Y A255092 Cf. A053669, A072875, A112998, A113000, A113008. %K A255092 nonn,look %O A255092 0,1 %A A255092 _Zak Seidov_, Feb 14 2015 %E A255092 More terms from _Robert Israel_, Sep 25 2024