cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A255102 Number of length n+3 0..2 arrays with at most one downstep in every 3 consecutive neighbor pairs.

Original entry on oeis.org

66, 168, 441, 1137, 2907, 7498, 19338, 49698, 127871, 329325, 847491, 2180700, 5613144, 14447250, 37180603, 95692059, 246288681, 633868172, 1631378124, 4198705332, 10806224445, 27811942767, 71579710341, 184225016494
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Column 3 of A255107.

Examples

			Some solutions for n=4:
..0....2....0....2....2....1....0....0....0....2....2....0....0....0....0....2
..1....1....2....1....0....1....2....1....2....2....0....0....1....1....0....0
..0....1....0....1....1....1....0....0....2....2....0....0....1....2....0....0
..2....1....0....1....2....2....1....0....2....2....1....1....0....0....1....1
..2....2....1....1....1....2....1....2....2....2....1....2....0....0....2....0
..1....1....1....1....1....0....0....2....2....2....1....1....0....2....1....0
..2....2....0....0....2....2....1....1....1....1....1....1....1....2....2....1
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +8*a(n-3) -9*a(n-4) +3*a(n-5) -a(n-6).
Empirical g.f.: x*(66 - 30*x + 135*x^2 - 210*x^3 + 69*x^4 - 26*x^5) / ((1 - x)*(1 - 2*x + x^2 - 7*x^3 + 2*x^4 - x^5)). - Colin Barker, Jan 24 2018

A255103 Number of length n+4 0..2 arrays with at most one downstep in every 4 consecutive neighbor pairs.

Original entry on oeis.org

147, 331, 789, 1905, 4429, 10125, 23463, 55246, 129480, 300432, 696375, 1623876, 3795126, 8845445, 20569653, 47880261, 111630444, 260248590, 606129714, 1411326056, 3287784315, 7661560197, 17850285244, 41578206276, 96850762992
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Column 4 of A255107.

Examples

			Some solutions for n=4:
..1....2....1....0....2....0....1....1....1....0....1....0....0....1....0....0
..1....0....0....0....0....0....2....2....1....1....1....0....0....2....2....1
..2....1....0....1....0....1....0....1....0....1....0....1....0....1....2....0
..0....1....0....0....0....0....1....2....0....0....0....1....0....1....2....0
..0....1....1....1....0....1....1....2....2....1....2....0....2....1....0....1
..0....1....2....1....2....2....1....2....2....1....2....1....2....2....0....2
..1....0....2....2....2....2....1....0....2....1....2....1....2....2....0....1
..1....0....0....1....0....1....2....0....0....0....1....2....2....2....0....2
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +12*a(n-4) -18*a(n-5) +7*a(n-6) -3*a(n-8) +a(n-9).
Empirical g.f.: x*(147 - 110*x + 237*x^2 + 384*x^3 - 1014*x^4 + 438*x^5 - 69*x^6 - 172*x^7 + 66*x^8) / (1 - 3*x + 3*x^2 - x^3 - 12*x^4 + 18*x^5 - 7*x^6 + 3*x^8 - x^9). - Colin Barker, Jan 24 2018

A255104 Number of length n+5 0..2 arrays with at most one downstep in every 5 consecutive neighbor pairs.

Original entry on oeis.org

294, 597, 1302, 2951, 6582, 14001, 29147, 61542, 133392, 292534, 634197, 1353282, 2874273, 6149472, 13283988, 28746325, 61881375, 132509427, 283590718, 609038592, 1311917331, 2825639015, 6072583563, 13028913003, 27962048781
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Column 5 of A255107.

Examples

			Some solutions for n=4:
..2....0....0....2....1....1....1....0....0....0....2....1....1....0....2....0
..0....0....1....0....2....1....1....0....0....0....2....1....1....1....0....2
..1....0....1....0....0....0....1....1....1....2....1....2....0....1....0....2
..1....0....2....0....1....0....2....0....1....2....1....0....1....2....1....2
..1....1....0....1....1....1....1....1....1....2....1....1....1....2....1....2
..1....1....2....1....1....1....1....1....1....2....1....2....2....2....1....0
..0....0....2....1....1....2....1....1....1....1....1....2....2....0....0....1
..0....0....2....1....0....1....2....2....1....1....2....2....0....1....0....1
..2....2....2....0....0....1....2....2....1....1....2....0....0....1....0....1
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +18*a(n-5) -29*a(n-6) +12*a(n-7) -6*a(n-10) +3*a(n-11).
Empirical g.f.: x*(294 - 285*x + 393*x^2 + 542*x^3 + 1038*x^4 - 3486*x^5 + 1719*x^6 - 129*x^7 - 318*x^8 - 684*x^9 + 441*x^10) / (1 - 3*x + 3*x^2 - x^3 - 18*x^5 + 29*x^6 - 12*x^7 + 6*x^10 - 3*x^11). - Colin Barker, Jan 24 2018

A255105 Number of length n+6 0..2 arrays with at most one downstep in every 6 consecutive neighbor pairs.

Original entry on oeis.org

540, 1008, 2032, 4338, 9297, 19263, 38010, 73278, 143045, 288057, 594045, 1228136, 2495244, 4970793, 9823140, 19533636, 39362880, 80112560, 163010352, 329127561, 659192991, 1316427636, 2637095196, 5313657069, 10747592751, 21727946097
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Column 6 of A255107

Examples

			Some solutions for n=4
..0....1....0....1....1....0....2....0....1....2....1....1....0....1....0....0
..2....0....0....2....1....0....0....1....0....0....1....1....0....1....1....1
..0....0....2....0....2....0....1....1....0....0....2....0....0....1....2....1
..0....1....2....0....0....1....1....0....0....0....1....0....1....2....0....0
..1....1....2....0....0....1....2....0....0....0....1....1....1....1....0....0
..2....1....0....1....1....0....2....0....0....0....1....2....1....1....0....1
..2....1....0....2....1....0....2....0....1....0....1....2....2....1....0....1
..2....1....1....2....1....0....2....1....2....1....1....2....2....1....1....2
..2....1....1....0....1....1....0....1....2....0....1....0....1....2....2....2
..0....2....2....0....2....2....0....2....0....0....0....1....2....2....1....1
		

Crossrefs

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +25*a(n-6) -42*a(n-7) +18*a(n-8) -10*a(n-12) +6*a(n-13)

A255106 Number of length n+7 0..2 arrays with at most one downstep in every 7 consecutive neighbor pairs.

Original entry on oeis.org

927, 1616, 3042, 6141, 12662, 25578, 49611, 91887, 166290, 303969, 573853, 1118256, 2210103, 4340001, 8343339, 15695433, 29216435, 54612816, 103548108, 199304393, 386593848, 747736983, 1432037309, 2714684340, 5119381929, 9669662693
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Column 7 of A255107

Examples

			Some solutions for n=4
..0....2....1....0....0....2....1....0....0....0....0....0....1....1....0....0
..1....2....1....0....2....2....1....1....0....1....1....1....0....2....0....0
..1....1....1....0....0....1....1....2....0....0....2....2....0....2....1....0
..1....2....0....1....0....1....1....0....0....0....2....0....1....2....1....0
..2....2....1....1....1....1....1....0....0....0....0....0....1....2....0....1
..2....2....1....1....1....1....2....0....1....1....0....0....1....2....0....1
..2....2....1....1....2....1....0....0....1....1....0....0....1....0....0....2
..1....2....2....1....2....1....1....0....1....2....0....0....1....2....0....2
..1....2....2....1....2....1....1....0....0....2....1....1....2....2....0....2
..1....2....2....1....2....2....1....0....2....1....2....2....0....2....1....2
..2....0....0....1....0....0....2....1....2....2....2....1....2....2....1....1
		

Crossrefs

Formula

Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +33*a(n-7) -57*a(n-8) +25*a(n-9) -15*a(n-14) +10*a(n-15)

A255108 Number of length n+1 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

9, 26, 66, 147, 294, 540, 927, 1507, 2343, 3510, 5096, 7203, 9948, 13464, 17901, 23427, 30229, 38514, 48510, 60467, 74658, 91380, 110955, 133731, 160083, 190414, 225156, 264771, 309752, 360624, 417945, 482307, 554337, 634698, 724090, 823251, 932958
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Row 1 of A255107.

Examples

			Some solutions for n=4:
..1....1....0....0....0....1....0....0....1....2....0....0....1....1....0....0
..1....2....0....0....0....1....1....1....1....1....2....2....2....0....0....0
..0....0....2....2....1....2....0....1....1....2....2....2....2....0....2....2
..0....2....1....0....1....2....0....2....1....2....2....1....0....0....2....0
..1....2....1....2....2....1....1....1....2....2....0....2....2....0....1....1
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/6)*n^4 + (19/24)*n^3 + (11/6)*n^2 + (16/5)*n + 3.
Empirical g.f.: x*(9 - 28*x + 45*x^2 - 39*x^3 + 17*x^4 - 3*x^5) / (1 - x)^6. - Colin Barker, Jan 24 2018

A255109 Number of length n+2 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

27, 75, 168, 331, 597, 1008, 1616, 2484, 3687, 5313, 7464, 10257, 13825, 18318, 23904, 30770, 39123, 49191, 61224, 75495, 92301, 111964, 134832, 161280, 191711, 226557, 266280, 311373, 362361, 419802, 484288, 556446, 636939, 726467, 825768, 935619
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Row 2 of A255107.

Examples

			Some solutions for n=4:
0   2   2   0   2   2   1   0   0   1   1   1   1   2   2   2
0   2   0   1   0   2   1   0   2   1   0   1   1   1   0   2
0   1   2   0   1   2   1   0   0   2   0   2   0   1   1   0
1   1   2   1   2   0   0   2   0   1   0   2   0   1   1   0
0   1   2   2   2   2   1   2   0   1   2   1   1   1   2   0
1   1   2   2   2   2   2   2   1   2   1   2   1   2   2   1
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = (1/120)*n^5 + (5/24)*n^4 + (37/24)*n^3 + (175/24)*n^2 + (239/20)*n + 6.
Empirical g.f.: x*(3 - 3*x + x^2)*(9 - 20*x + 18*x^2 - 6*x^3) / (1 - x)^6. - Colin Barker, Jan 24 2018

A255110 Number of length n+3 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

81, 216, 441, 789, 1302, 2032, 3042, 4407, 6215, 8568, 11583, 15393, 20148, 26016, 33184, 41859, 52269, 64664, 79317, 96525, 116610, 139920, 166830, 197743, 233091, 273336, 318971, 370521, 428544, 493632, 566412, 647547, 737737, 837720, 948273
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Row 3 of A255107.

Examples

			Some solutions for n=4:
1   0   2   0   2   0   2   0   2   0   2   0   1   0   0   0
0   2   1   1   0   0   2   2   0   0   0   2   1   0   1   0
0   0   1   1   0   0   2   1   0   0   0   1   2   0   0   0
0   0   1   1   1   0   2   2   1   0   1   1   0   0   0   1
1   1   1   2   1   0   0   2   1   0   1   2   2   1   0   2
1   2   0   0   2   1   0   2   1   0   0   2   2   2   0   2
1   1   2   1   2   2   2   1   2   0   2   1   2   2   0   0
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/4)*n^4 + (59/24)*n^3 + (93/4)*n^2 + (1321/30)*n + 11.
Empirical g.f.: x*(81 - 270*x + 360*x^2 - 237*x^3 + 78*x^4 - 11*x^5) / (1 - x)^6. - Colin Barker, Jan 24 2018

A255111 Number of length n+4 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

243, 622, 1137, 1905, 2951, 4338, 6141, 8448, 11361, 14997, 19489, 24987, 31659, 39692, 49293, 60690, 74133, 89895, 108273, 129589, 154191, 182454, 214781, 251604, 293385, 340617, 393825, 453567, 520435, 595056, 678093, 770246, 872253, 984891
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Row 4 of A255107.

Examples

			Some solutions for n=4:
1   1   0   0   2   2   1   2   0   0   2   2   1   2   0   0
1   1   0   2   0   0   2   0   0   2   2   2   2   0   1   2
1   2   0   1   1   0   2   2   2   1   2   2   0   0   1   1
0   2   1   1   1   0   1   2   2   1   2   2   0   0   2   2
0   2   2   1   1   1   2   2   2   1   1   2   2   0   2   2
0   2   2   2   2   2   2   2   2   2   1   1   2   1   0   2
1   2   0   0   1   2   2   0   2   2   2   1   2   2   2   2
0   2   0   0   1   2   0   2   0   2   2   2   1   1   2   0
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = (1/120)*n^5 + (7/24)*n^4 + (85/24)*n^3 + (1505/24)*n^2 + (2809/20)*n + 30 for n>2.
Empirical g.f.: x*(243 - 836*x + 1050*x^2 - 447*x^3 - 219*x^4 + 339*x^5 - 156*x^6 + 27*x^7) / (1 - x)^6. - Colin Barker, Jan 24 2018

A255112 Number of length n+5 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.

Original entry on oeis.org

729, 1791, 2907, 4429, 6582, 9297, 12662, 16779, 21765, 27753, 34893, 43353, 53320, 65001, 78624, 94439, 112719, 133761, 157887, 185445, 216810, 252385, 292602, 337923, 388841, 445881, 509601, 580593, 659484, 746937, 843652, 950367, 1067859
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Row 5 of A255107.

Examples

			Some solutions for n=4:
..0....2....1....0....1....2....1....1....0....1....0....2....1....0....0....2
..2....0....1....1....0....2....1....0....2....0....2....2....0....2....2....0
..2....0....1....0....0....1....2....1....1....0....0....0....0....2....2....0
..0....2....1....0....1....1....1....1....1....2....0....1....0....2....2....0
..0....2....0....1....2....2....1....2....1....2....2....1....0....2....1....0
..2....2....0....2....2....2....1....2....1....2....2....1....0....0....1....0
..2....0....0....0....1....0....2....1....0....2....2....2....0....1....1....2
..1....1....1....1....2....1....0....1....0....2....1....0....0....1....2....2
..2....1....1....2....2....1....2....2....0....0....2....0....1....1....1....1
		

Crossrefs

Cf. A255107.

Formula

Empirical: a(n) = (1/120)*n^5 + (1/3)*n^4 + (115/24)*n^3 + (889/6)*n^2 + (3867/10)*n + 111 for n>3.
Empirical g.f.: x*(729 - 2583*x + 3096*x^2 - 728*x^3 - 1272*x^4 + 591*x^5 + 618*x^6 - 594*x^7 + 144*x^8) / (1 - x)^6. - Colin Barker, Jan 24 2018
Showing 1-10 of 12 results. Next