A255112 Number of length n+5 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.
729, 1791, 2907, 4429, 6582, 9297, 12662, 16779, 21765, 27753, 34893, 43353, 53320, 65001, 78624, 94439, 112719, 133761, 157887, 185445, 216810, 252385, 292602, 337923, 388841, 445881, 509601, 580593, 659484, 746937, 843652, 950367, 1067859
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0....2....1....0....1....2....1....1....0....1....0....2....1....0....0....2 ..2....0....1....1....0....2....1....0....2....0....2....2....0....2....2....0 ..2....0....1....0....0....1....2....1....1....0....0....0....0....2....2....0 ..0....2....1....0....1....1....1....1....1....2....0....1....0....2....2....0 ..0....2....0....1....2....2....1....2....1....2....2....1....0....2....1....0 ..2....2....0....2....2....2....1....2....1....2....2....1....0....0....1....0 ..2....0....0....0....1....0....2....1....0....2....2....2....0....1....1....2 ..1....1....1....1....2....1....0....1....0....2....1....0....0....1....2....2 ..2....1....1....2....2....1....2....2....0....0....2....0....1....1....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A255107.
Formula
Empirical: a(n) = (1/120)*n^5 + (1/3)*n^4 + (115/24)*n^3 + (889/6)*n^2 + (3867/10)*n + 111 for n>3.
Empirical g.f.: x*(729 - 2583*x + 3096*x^2 - 728*x^3 - 1272*x^4 + 591*x^5 + 618*x^6 - 594*x^7 + 144*x^8) / (1 - x)^6. - Colin Barker, Jan 24 2018
Comments