cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255113 Number of length n+6 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.

This page as a plain text file.
%I A255113 #8 Jan 24 2018 14:25:25
%S A255113 2187,5157,7498,10125,14001,19263,25578,33063,41851,52092,63954,77624,
%T A255113 93309,111237,131658,154845,181095,210730,244098,281574,323561,370491,
%U A255113 422826,481059,545715,617352,696562,783972,880245,986081,1102218,1229433
%N A255113 Number of length n+6 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.
%C A255113 Row 6 of A255107.
%H A255113 R. H. Hardin, <a href="/A255113/b255113.txt">Table of n, a(n) for n = 1..210</a>
%F A255113 Empirical: a(n) = (1/120)*n^5 + (3/8)*n^4 + (149/24)*n^3 + (2521/8)*n^2 + (56417/60)*n + 385 for n>4.
%F A255113 Empirical g.f.: x*(2187 - 7965*x + 9361*x^2 - 1248*x^3 - 4614*x^4 + 1405*x^5 + 1230*x^6 + 564*x^7 - 1354*x^8 + 435*x^9) / (1 - x)^6. - _Colin Barker_, Jan 24 2018
%e A255113 Some solutions for n=4:
%e A255113 ..1....0....1....0....1....2....1....0....2....0....1....1....2....2....0....0
%e A255113 ..2....2....2....2....1....0....1....2....1....0....2....1....2....1....1....2
%e A255113 ..2....0....0....1....1....0....2....2....1....2....2....2....0....1....2....0
%e A255113 ..1....0....0....1....1....1....1....1....1....0....2....0....1....2....2....2
%e A255113 ..1....0....0....2....1....1....1....1....1....0....0....1....1....2....2....2
%e A255113 ..2....0....1....2....2....2....1....2....1....0....0....1....1....2....0....2
%e A255113 ..2....0....1....2....1....2....1....2....1....2....0....2....1....2....1....0
%e A255113 ..0....2....2....0....2....2....2....1....2....2....2....2....0....0....1....0
%e A255113 ..2....1....2....0....2....0....0....1....1....0....0....2....0....1....1....0
%e A255113 ..2....2....1....2....2....1....1....2....1....1....0....0....0....2....0....2
%Y A255113 Cf. A255107.
%K A255113 nonn
%O A255113 1,1
%A A255113 _R. H. Hardin_, Feb 14 2015