cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255118 Number of n-length words on {0,1,2,3,4,5} in which 0 appears only in runs of length 2.

This page as a plain text file.
%I A255118 #22 Oct 12 2022 08:40:41
%S A255118 1,5,26,135,700,3630,18825,97625,506275,2625500,13615625,70609500,
%T A255118 366175000,1898953125,9847813125,51069940625,264844468750,
%U A255118 1373461409375,7122656750000,36937506093750,191554837515625,993387471328125,5151624887109375,26715898623125000
%N A255118 Number of n-length words on {0,1,2,3,4,5} in which 0 appears only in runs of length 2.
%H A255118 Colin Barker, <a href="/A255118/b255118.txt">Table of n, a(n) for n = 0..1000</a>
%H A255118 D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html">On the Enumeration of Restricted Words over a Finite Alphabet</a>, J. Int. Seq. 19 (2016) # 16.1.3, example 10
%H A255118 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,5).
%F A255118 a(n+3) = 5*a(n+2) + 5*a(n) with n>1, a(0) = 1, a(1) = 5, a(2) = 26.
%F A255118 G.f.: -(x^2+1) / (5*x^3+5*x-1). - _Colin Barker_, Feb 15 2015
%t A255118 RecurrenceTable[{a[0] == 1, a[1] == 5,  a[2]== 26, a[n] == 5 a[n - 1] + 5 a[n - 3]}, a[n], {n, 0, 20}]
%o A255118 (PARI) Vec(-(x^2+1)/(5*x^3+5*x-1) + O(x^100)) \\ _Colin Barker_, Feb 15 2015
%Y A255118 Cf. A000930, A239333, A239340, A254657, A254600, A254664.
%K A255118 nonn,easy
%O A255118 0,2
%A A255118 _Milan Janjic_, Feb 14 2015