This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255127 #50 Nov 18 2024 07:36:05 %S A255127 2,4,3,6,9,5,8,15,19,7,10,21,35,31,11,12,27,49,59,55,13,14,33,65,85, %T A255127 103,73,17,16,39,79,113,151,133,101,23,18,45,95,137,203,197,187,145, %U A255127 25,20,51,109,163,251,263,281,271,167,29,22,57,125,191,299,325,367,403,311,205,37,24,63,139,217,343,385,461,523,457,371,253,41 %N A255127 Ludic array: square array A(row,col), where row n lists the numbers removed at stage n in the sieve which produces Ludic numbers. Array is read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... %C A255127 The starting offset of the sequence giving the terms of square array is 2. However, we can tacitly assume that a(1) = 1 when the sequence is used as a permutation of natural numbers. However, term 1 itself is out of the array. %C A255127 The choice of offset = 2 for the terms starting in rows >= 1 is motivated by the desire to have a permutation of the integers n -> a(n) with a(n) = A(A002260(n-1), A004736(n-1)) for n > 1 and a(1) := 1. However, since this sequence is declared as a "table", offset = 2 would mean that the first *row* (not element) has index 2. I think the sequence should have offset = 1 and the permutation of the integers would be n -> a(n-1) with a(0) := 1 (if a(1) = A(1,1) = 2). Or, the sequence could have offset 0, with an additional row 0 of length 1 with the only element a(0) = A(0,1) = 1, the permutation still being n -> a(n-1) if a(n=0, 1, 2, ...) = (1, 2, 4, ...). This would be in line with considering 1 as the first ludic number, and A(n, 1) = A003309(n+1) for n >= 0. - _M. F. Hasler_, Nov 12 2024 %H A255127 Antti Karttunen, <a href="/A255127/b255127.txt">Table of n, a(n) for n = 2..10441; the first 144 antidiagonals of array, flattened</a> %F A255127 From _M. F. Hasler_, Nov 12 2024: (Start) %F A255127 A(r, c) = A(r, c-P(r)) + S(r) = A(r, ((c-1) mod P(r)) + 1) + floor((c-1)/P(r))*S(r) with periods P = (1, 1, 2, 8, 48, 480, 5760, ...) = A377469, and shifts S = (2, 6, 30, 210, 2310, 30030, 510510) = A376237(2, 3, ...). For example: %F A255127 A(1, c) = A(1, c-1) + 2 = 2 + (c-1)*2 = 2*c, %F A255127 A(2, c) = A(2, c-1) + 6 = 3 + (c-1)*6 = 6*c - 3, %F A255127 A(3, c) = A(3, c-2) + 30 = {5 if c is odd else 19} + floor((c-1)/2)*30 = 15*c - 11 + (c mod 2), %F A255127 A(4, c) = A(4, c-8) + 210 = A(4, ((c-1) mod 8)+1) + floor((c-1)/8)*210, etc. (End) %e A255127 The top left corner of the array: %e A255127 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 %e A255127 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75 %e A255127 5, 19, 35, 49, 65, 79, 95, 109, 125, 139, 155, 169, 185 %e A255127 7, 31, 59, 85, 113, 137, 163, 191, 217, 241, 269, 295, 323 %e A255127 11, 55, 103, 151, 203, 251, 299, 343, 391, 443, 491, 539, 587 %e A255127 13, 73, 133, 197, 263, 325, 385, 449, 511, 571, 641, 701, 761 %e A255127 17, 101, 187, 281, 367, 461, 547, 629, 721, 809, 901, 989, 1079 %e A255127 23, 145, 271, 403, 523, 655, 781, 911, 1037, 1157, 1289, 1417, 1543 %e A255127 25, 167, 311, 457, 599, 745, 883, 1033, 1181, 1321, 1469, 1615, 1753 %e A255127 29, 205, 371, 551, 719, 895, 1073, 1243, 1421, 1591, 1771, 1945, 2117 %e A255127 ... %t A255127 rows = 12; cols = 12; t = Range[2, 3000]; r = {1}; n = 1; While[n <= rows, k = First[t]; AppendTo[r, k]; t0 = t; t = Drop[t, {1, -1, k}]; ro[n++] = Complement[t0, t][[1 ;; cols]]]; A = Array[ro, rows]; Table[ A[[n - k + 1, k]], {n, 1, rows}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Mar 14 2016, after _Ray Chandler_ *) %o A255127 (Scheme) %o A255127 (define (A255127 n) (if (<= n 1) n (A255127bi (A002260 (- n 1)) (A004736 (- n 1))))) %o A255127 (define (A255127bi row col) ((rowfun_n_for_A255127 row) col)) %o A255127 ;; definec-macro memoizes its results: %o A255127 (definec (rowfun_n_for_A255127 n) (if (= 1 n) (lambda (n) (+ n n)) (let* ((rowfun_for_remaining (rowfun_n_for_remaining_numbers (- n 1))) (eka (rowfun_for_remaining 0))) (COMPOSE rowfun_for_remaining (lambda (n) (* eka (- n 1))))))) %o A255127 (definec (rowfun_n_for_remaining_numbers n) (if (= 1 n) (lambda (n) (+ n n 3)) (let* ((rowfun_for_prevrow (rowfun_n_for_remaining_numbers (- n 1))) (off (rowfun_for_prevrow 0))) (COMPOSE rowfun_for_prevrow (lambda (n) (+ 1 n (floor->exact (/ n (- off 1))))))))) %o A255127 (Python) %o A255127 a255127 = lambda n: A255127(A002260(k-1), A004736(k-1)) %o A255127 def A255127(n, k): %o A255127 A = A255127; R = A.rows %o A255127 while len(R) <= n or len(R[n]) < min(k, A.P[n]): A255127_extend(2*n) %o A255127 return R[n][(k-1) % A.P[n]] + (k-1)//A.P[n] * A.S[n] %o A255127 A=A255127; A.rows=[[1],[2],[3]]; A.P=[1]*3; A.S=[0,2,6]; A.limit=30 %o A255127 def A255127_extend(rMax=9, A=A255127): %o A255127 A.limit *= 2; L = [x+5-x%2 for x in range(0, A.limit, 3)] %o A255127 for r in range(3, rMax): %o A255127 if len(A.P) == r: %o A255127 A.P += [ A.P[-1] * (A.rows[-1][0] - 1) ] # A377469 %o A255127 A.rows += [[]]; A.S += [ A.S[-1] * L[0] ] # ludic factorials %o A255127 if len(R := A.rows[r]) < A.P[r]: # append more terms to this row %o A255127 R += L[ L[0]*len(R) : A.S[r] : L[0] ] %o A255127 L = [x for i, x in enumerate(L) if i%L[0]] # _M. F. Hasler_, Nov 17 2024 %Y A255127 Transpose: A255129. %Y A255127 Inverse: A255128. (When considered as a permutation of natural numbers with a(1) = 1). %Y A255127 Cf. A260738 (index of the row where n occurs), A260739 (of the column). %Y A255127 Main diagonal: A255410. %Y A255127 Column 1: A003309 (without the initial 1). Column 2: A254100. %Y A255127 Row 1: A005843, Row 2: A016945, Row 3: A255413, Row 4: A255414, Row 5: A255415, Row 6: A255416, Row 7: A255417, Row 8: A255418, Row 9: A255419. %Y A255127 A192607 gives all the numbers right of the leftmost column, and A192506 gives the composites among them. %Y A255127 Cf. A272565, A271419, A271420 and permutations A269379, A269380, A269384. %Y A255127 Cf. also related or derived arrays A260717, A257257, A257258 (first differences of rows), A276610 (of columns), A276580. %Y A255127 Analogous arrays for other sieves: A083221, A255551, A255543. %Y A255127 Cf. A376237 (ludic factorials), A377469 (ludic analog of A005867). %K A255127 nonn,tabl,look %O A255127 2,1 %A A255127 _Antti Karttunen_, Feb 22 2015