A255135 Dimensions where the volume of an L^p unit ball is maximized.
1, 5, 16, 41, 102, 242, 558, 1263, 2817, 6214, 13583, 29471, 63548, 136305, 291019, 618849, 1311314, 2769847, 5834119, 12257072, 25691785, 53738815, 112188059, 233796875, 486435094, 1010552580, 2096469429, 4343666482
Offset: 1
Keywords
Examples
a(2) = 5 because the sequence vol(R=1, p=2, n) increases monotonically up to n=5 and then decreases monotonically. The approximate values for vol(1,p,a(p)) are 2, 5.263789015, 50.05958637, 5970.510613, p = 1..4. - _Wolfdieter Lang_, Mar 20 2015
Links
- Necdet Batir, Inequalities for the Inverses of the Polygamma Functions, arXiv:1705.06547 [math.CA], 2017.
- N. Elezovic, C. Giordano and J. Pecaric, The best bounds in Gautschi's inequality, Math. Inequal. Appl. 3 (2000), 239-252.
- Wikipedia, Balls in L^p norms
Programs
-
Mathematica
f[p_] = Round[FindArgMax[((2^n)*(Gamma[1+(1/p)])^n)/Gamma[1+(n/p)], n]]
Formula
From Robert L. Diersing, May 26 2020: (Start)
Define c = 2*gamma(1 + 1/p), and n` = p*(c^p - 1/2)
for x in [floor(n` - 1/2), floor(n` + 1/2), floor(n` + 3/2)]
a(n) = the value x that gives the largest volume. (End)
Extensions
Edited by Wolfdieter Lang, Mar 20 2015
More terms from Robert L. Diersing, May 26 2020
Comments