A255168 Rectangular array A read by upward antidiagonals in which row n is the set of positive integers that are congruent to {(1 + 2^n*(3 + 2*(-1)^n))/3, 2^(n + 1), (1 + 2^n*(15 + 2*(-1)^n))/3} (mod 2^(n+2)).
1, 7, 4, 3, 8, 5, 27, 16, 15, 9, 11, 32, 19, 23, 12, 107, 64, 59, 35, 24, 13, 43, 128, 75, 91, 48, 31, 17, 427, 256, 235, 139, 96, 51, 39, 20, 171, 512, 299, 363, 192, 123, 67, 40, 21, 1707, 1024, 939, 555, 384, 203, 155, 80, 47, 25
Offset: 1
Examples
Array A begins: . 1 4 5 9 12 13 17 20 21 25 . 7 8 15 23 24 31 39 40 47 55 . 3 16 19 35 48 51 67 80 83 99 . 27 32 59 91 96 123 155 160 187 219 . 11 64 75 139 192 203 267 320 331 395 . 107 128 235 363 384 491 619 640 747 875 . 43 256 299 555 768 811 1067 1280 1323 1579 . 427 512 939 1451 1536 1963 2475 2560 2987 3499 . 171 1024 1195 2219 3072 3243 4267 5120 5291 6315 . 1707 2048 3755 5803 6144 7851 9899 10240 11947 13995
Crossrefs
A047610 (row 1).
Programs
-
Mathematica
(* Array antidiagonals flattened: *) a[n_, 1] := (1 + 2^n*(3 + 2*(-1)^n))/3; a[n_, 2] := 2^(n + 1); a[n_, 3] := a[n, 1] + 2^(n + 1); a[n_, k_] := a[n, k - 3] + 2^(n + 2); Flatten[Table[a[n - k + 1, k], {n, 10}, {k, n}]]
Formula
A(n,k) = A(n,k-3) + 2^(n+2), n >= 1, k > 3, with initial conditions A(n,1) = (1 + 2^n*(3 + 2*(-1)^n))/3, A(n,2) = 2^(n+1), A(n,3) = A(n,1) + 2^(n+1).
A(n,k) == (1 + 2^n*(3 + 2*(-1)^n))/3 (mod 2^(n+1) or 2^(n+1) (mod 2^(n+2)).