cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255168 Rectangular array A read by upward antidiagonals in which row n is the set of positive integers that are congruent to {(1 + 2^n*(3 + 2*(-1)^n))/3, 2^(n + 1), (1 + 2^n*(15 + 2*(-1)^n))/3} (mod 2^(n+2)).

Original entry on oeis.org

1, 7, 4, 3, 8, 5, 27, 16, 15, 9, 11, 32, 19, 23, 12, 107, 64, 59, 35, 24, 13, 43, 128, 75, 91, 48, 31, 17, 427, 256, 235, 139, 96, 51, 39, 20, 171, 512, 299, 363, 192, 123, 67, 40, 21, 1707, 1024, 939, 555, 384, 203, 155, 80, 47, 25
Offset: 1

Views

Author

L. Edson Jeffery, May 04 2015

Keywords

Examples

			Array A begins:
.       1     4     5     9    12    13    17     20     21     25
.       7     8    15    23    24    31    39     40     47     55
.       3    16    19    35    48    51    67     80     83     99
.      27    32    59    91    96   123   155    160    187    219
.      11    64    75   139   192   203   267    320    331    395
.     107   128   235   363   384   491   619    640    747    875
.      43   256   299   555   768   811  1067   1280   1323   1579
.     427   512   939  1451  1536  1963  2475   2560   2987   3499
.     171  1024  1195  2219  3072  3243  4267   5120   5291   6315
.    1707  2048  3755  5803  6144  7851  9899  10240  11947  13995
		

Crossrefs

A047610 (row 1).

Programs

  • Mathematica
    (* Array antidiagonals flattened: *)
    a[n_, 1] := (1 + 2^n*(3 + 2*(-1)^n))/3; a[n_, 2] := 2^(n + 1); a[n_, 3] := a[n, 1] + 2^(n + 1); a[n_, k_] := a[n, k - 3] + 2^(n + 2); Flatten[Table[a[n - k + 1, k], {n, 10}, {k, n}]]

Formula

A(n,k) = A(n,k-3) + 2^(n+2), n >= 1, k > 3, with initial conditions A(n,1) = (1 + 2^n*(3 + 2*(-1)^n))/3, A(n,2) = 2^(n+1), A(n,3) = A(n,1) + 2^(n+1).
A(n,k) == (1 + 2^n*(3 + 2*(-1)^n))/3 (mod 2^(n+1) or 2^(n+1) (mod 2^(n+2)).