This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255192 #21 Mar 25 2023 07:51:28 %S A255192 1,4,1,81,78,36,9,1,4096,8424,9552,7464,4272,1812,560,120,16,1,390625, %T A255192 1359640,2696200,3880300,4394600,4059000,3111140,1994150,1070150, %U A255192 478800,176900,53120,12650,2300,300,25,1,60466176,314452800,939988800,2075760000 %N A255192 Triangle of number of connected subgraphs of K(n,n) with m edges. %C A255192 m ranges from 2n-1 to n^2. %C A255192 First column is A068087. %F A255192 Sum(k>=0, T(n,k)*(-1)^k ) = A136126(2*n-1,n-1) = A092552(n+1), alternating row sums. %e A255192 Triangle begins: %e A255192 ----|------------------------------------------------------------ %e A255192 n\m | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 %e A255192 ----|------------------------------------------------------------ %e A255192 1 | 1 %e A255192 2 | - - 4 1 %e A255192 3 | - - - - 81 78 36 9 1 %e A255192 4 | - - - - - - 4096 8424 9552 7464 4272 1812 560 120 16 1 %o A255192 (Python) %o A255192 from math import comb as binomial %o A255192 def f(x, a, b, k): %o A255192 if b == k == 0: %o A255192 return 1 %o A255192 if b == 0 or k == 0: %o A255192 return 0 %o A255192 if x == a: %o A255192 return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1)) %o A255192 return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2) %o A255192 for n in range(1, b + 1) for k2 in range(0, k + 1) ) %o A255192 def a(n, m): %o A255192 return f(1, n, n, m) %o A255192 for n in range(1, 5): %o A255192 print([a(n, m) for m in range(1, n * n + 1)]) %Y A255192 Cf. A005333 (row sums?). %K A255192 nonn,tabf %O A255192 1,2 %A A255192 _Thomas Dybdahl Ahle_, Feb 16 2015