This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255231 #53 May 24 2017 14:40:50 %S A255231 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,3,2,1,2,2,1,1,1,5,1,1, %T A255231 1,4,1,1,1,3,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,3,1,1,1,2,1,1,2,7,1,1,1,2, %U A255231 1,1,1,6,1,1,2,2,1,1,1,5,4,1,1,2,1,1,1,3,1,2,1,2,1,1,1,6,1,2,2,4,1,1,1,3,1,1,1,6,1,1,1,5,1,1,1,2,2,1,1,3 %N A255231 The number of factorizations n = Product_i b_i^e_i, where all bases b_i are distinct, and all exponents e_i are distinct >=1. %C A255231 Not multiplicative: a(48) = a(2^4*3) = 5 <> a(2^4)*a(3) = 4*1 = 4. - _R. J. Mathar_, Nov 05 2016 %H A255231 R. J. Mathar, <a href="/A255231/b255231.txt">Table of n, a(n) for n = 1..419</a> %H A255231 R. J. Mathar, <a href="/A255231/a255231.pdf">Factorizations of integers into factors with distinct bases and exponents</a> %H A255231 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %F A255231 a(n)=1 for all n in A005117. a(n)=2 for all n in A001248 and for all n in A054753 and for all n in A085987 and for all n in A030078. a(n)=3 for all n in A065036. a(n)=4 for all n in A085986 and for all n in A030514. a(n)=5 for all n in A178739, all n in A179644 and for all n in A050997. a(n)=6 for all n in A143610, all n in A162142 and all n in A178740. a(n)=7 for all n in A030516. a(n)=9 for all n in A189988 and all n in A189987. a(n)=10 for all n in A092759. a(n) = 11 for all n in A179664. a(n)=12 for all n in A179646. - _R. J. Mathar_, Nov 05 2016, May 20 2017 %e A255231 From _R. J. Mathar_, Nov 05 2016: (Start) %e A255231 a(4)=2: 4^1 = 2^2. %e A255231 a(8)=2: 8^1 = 2^3. %e A255231 a(9)=2: 9^1 = 3^2. %e A255231 a(12)=2: 12^1 = 2^2*3^1. %e A255231 a(16)=4: 16^1 = 4^2 = 2^2*4^1 = 2^4. %e A255231 a(18)=2: 18^1 = 2*3^2. %e A255231 a(20)=2: 20^1 = 2^2*5^1. %e A255231 a(24)=3: 24^1 = 2^2*6^1 = 2^3*3^1. %e A255231 a(32)=5: 32^1 = 2^1*4^2 = 2^2*8^1 = 2^3*4^1 = 2^5. %e A255231 a(36)=4: 36^1 = 6^2 = 3^2*4^1 = 2^2*9^1. %e A255231 a(48)=5: 48^1 = 3^1*4^2 = 2^2*12^1 = 2^3*6^1 = 2^4*3^1. %e A255231 a(60)=2 : 60^1 = 2^2*15^1. %e A255231 a(64)=7: 64^1 = 8^2 = 4^3 = 2^2*16^1 = 2^3*8^1 = 2^4*4^1 = 2^6. %e A255231 a(72)=6 : 72^1 = 3^2*8^1 = 2^1*6^2 = 2^2*18^1 = 2^3*9^1 = 2^3*3^2. %e A255231 (End) %p A255231 # Count solutions for products if n = dvs_i^exps(i) where i=1..pividx are fixed %p A255231 Apiv := proc(n,dvs,exps,pividx) %p A255231 local dvscnt, expscopy,i,a,expsrt,e ; %p A255231 dvscnt := nops(dvs) ; %p A255231 a := 0 ; %p A255231 if pividx > dvscnt then %p A255231 # have exhausted the exponent list: leave of the recursion %p A255231 # check that dvs_i^exps(i) is a representation %p A255231 if n = mul( op(i,dvs)^op(i,exps),i=1..dvscnt) then %p A255231 # construct list of non-0 exponents %p A255231 expsrt := []; %p A255231 for i from 1 to dvscnt do %p A255231 if op(i,exps) > 0 then %p A255231 expsrt := [op(expsrt),op(i,exps)] ; %p A255231 end if; %p A255231 end do; %p A255231 # check that list is duplicate-free %p A255231 if nops(expsrt) = nops( convert(expsrt,set)) then %p A255231 return 1; %p A255231 else %p A255231 return 0; %p A255231 end if; %p A255231 else %p A255231 return 0 ; %p A255231 end if; %p A255231 end if; %p A255231 # need a local copy of the list to modify it %p A255231 expscopy := [] ; %p A255231 for i from 1 to nops(exps) do %p A255231 expscopy := [op(expscopy),op(i,exps)] ; %p A255231 end do: %p A255231 # loop over all exponents assigned to the next base in the list. %p A255231 for e from 0 do %p A255231 candf := op(pividx,dvs)^e ; %p A255231 if modp(n,candf) <> 0 then %p A255231 break; %p A255231 end if; %p A255231 # assign e to the local copy of exponents %p A255231 expscopy := subsop(pividx=e,expscopy) ; %p A255231 a := a+procname(n,dvs,expscopy,pividx+1) ; %p A255231 end do: %p A255231 return a; %p A255231 end proc: %p A255231 A255231 := proc(n) %p A255231 local dvs,dvscnt,exps ; %p A255231 if n = 1 then %p A255231 return 1; %p A255231 end if; %p A255231 # candidates for the bases are all divisors except 1 %p A255231 dvs := convert(numtheory[divisors](n) minus {1},list) ; %p A255231 dvscnt := nops(dvs) ; %p A255231 # list of exponents starts at all-0 and is %p A255231 # increased recursively %p A255231 exps := [seq(0,e=1..dvscnt)] ; %p A255231 # take any subset of dvs for the bases, i.e. exponents 0 upwards %p A255231 Apiv(n,dvs,exps,1) ; %p A255231 end proc: %p A255231 seq(A255231(n),n=1..120) ; # _R. J. Mathar_, Nov 05 2016 %Y A255231 Cf. A000688 (b_i not necessarily distinct). %Y A255231 Cf. A001248, A005117, A030078, A030514, A054753, A065036, A085986, A085987, A143610, A178739. %K A255231 nonn %O A255231 1,4 %A A255231 _Saverio Picozzi_, Feb 18 2015 %E A255231 Values corrected. Incorrect comments removed. - _R. J. Mathar_, Nov 05 2016