cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255232 One half of the fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 7, 6, 6, 7, 7, 9, 7, 7, 8, 10, 8, 9, 8, 8, 9, 11, 10, 9, 10, 13, 11, 10, 13, 14, 12, 11, 13, 11, 11, 12, 13, 12, 14, 13, 16, 12, 12, 17, 13, 14, 13, 16, 13, 18, 14, 16, 15, 14, 17, 14, 15, 14, 14, 14, 17, 16, 19, 16, 17, 16, 20, 21, 17, 16, 17, 16, 16
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

For the corresponding term x1(n) see A254938(n).
See A254938 also for the Nagell reference.
The least positive y solutions (that is those of the first class) for the primes +1 and -1 (mod 8) together (including prime 2) are given in A255246.

Examples

			See A254938.
n = 3: 1^2 - 2*(2*2)^2 = 1 - 32  = -31 = -A007522(3).
		

Crossrefs

Cf. A007522 (primes == 7 mod 8), A254938 (corresponding x1 values), A255233 (x2 values), A255234 (y2 values), A255246, A254935.

Programs

  • PARI
    apply( {A255232(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1][2]\2}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

A254938(n)^2 - 2*(2*a(n))^2 = -A007522(n) gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 23 2015
Double-checked and extended by M. F. Hasler, May 22 2025