A255232 One half of the fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).
1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 7, 6, 6, 7, 7, 9, 7, 7, 8, 10, 8, 9, 8, 8, 9, 11, 10, 9, 10, 13, 11, 10, 13, 14, 12, 11, 13, 11, 11, 12, 13, 12, 14, 13, 16, 12, 12, 17, 13, 14, 13, 16, 13, 18, 14, 16, 15, 14, 17, 14, 15, 14, 14, 14, 17, 16, 19, 16, 17, 16, 20, 21, 17, 16, 17, 16, 16
Offset: 1
Examples
See A254938. n = 3: 1^2 - 2*(2*2)^2 = 1 - 32 = -31 = -A007522(3).
Links
- M. F. Hasler, Table of n, a(n) for n = 1..1000, May 22 2025
Crossrefs
Programs
-
PARI
apply( {A255232(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1][2]\2}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
Formula
Extensions
More terms from Colin Barker, Feb 23 2015
Double-checked and extended by M. F. Hasler, May 22 2025
Comments