cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255236 All positive solutions x of the second class of the Pell equation x^2 - 2*y^2 = -7.

This page as a plain text file.
%I A255236 #24 Sep 08 2022 08:46:11
%S A255236 5,31,181,1055,6149,35839,208885,1217471,7095941,41358175,241053109,
%T A255236 1404960479,8188709765,47727298111,278175078901,1621323175295,
%U A255236 9449763972869,55077260661919,321013799998645,1871005539329951,10905019435981061,63559111076556415
%N A255236 All positive solutions x of the second class of the Pell equation x^2 - 2*y^2 = -7.
%C A255236 For the corresponding y = y2 terms see 2*A038725(n+1).
%C A255236 The Pell equation x^2 - 2*y^2 = 7 has two classes of solutions. See, e.g., the Nagell reference and comments under A254938 and A255233. Here the positive solutions based on the fundamental solution (5, 4) (the second largest positive solution) are considered.
%C A255236 The positive solutions of the first class are given in (A054490(n), 2*A038723(n)), n >= 0.
%C A255236 The combined solutions of both classes are given in (A077446, 4*A077447).
%C A255236 The solutions (x(n), y(n)) of x^2 - 2*y^2 = -7 translate to the solutions (X(n), Y(n)) = (2*y(n) , x(n)) of the Pell equation X^2 - 2*Y^2 = 14.
%H A255236 Colin Barker, <a href="/A255236/b255236.txt">Table of n, a(n) for n = 0..1000</a>
%H A255236 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H A255236 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1).
%F A255236 a(n) = 5*S(n, 6) + S(n-1, 6), n >= 0, with the Chebyshev polynomials S(n, x) (A049310), with S(-1, x) = 0, evaluated at x = 6. S(n, 6) = A001109(n-1).
%F A255236 G.f.: (5 + x)/(1 - 6*x + x^2).
%F A255236 a(n) = 6*a(n-1) - a(n-2), n >= 2, with a(-1) = -1 and a(0) = 5.
%F A255236 a(n) = 2*A038761(n) + A038762(n), n >= 0. See the Mar 19 comment on A054490. - _Wolfdieter Lang_, Mar 19 2015
%F A255236 a(n) = ((3-2*sqrt(2))^n*(-8+5*sqrt(2)) + (3+2*sqrt(2))^n*(8+5*sqrt(2))) / (2*sqrt(2)). - _Colin Barker_, Oct 13 2015
%e A255236 n = 2: 181^2 - 2*(2*64)^2  = -7; (4*64)^2 - 2*181^2 = 14.
%e A255236 n = 2: 2*53 + 75 = 181. - _Wolfdieter Lang_, Mar 19 2015
%t A255236 CoefficientList[Series[(5 + x) / (1 - 6 x + x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Mar 20 2015 *)
%o A255236 (PARI) Vec((5 + x)/(1 - 6*x + x^2) + O(x^30)) \\ _Michel Marcus_, Mar 20 2015
%o A255236 (Magma) I:=[5,31]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 20 2015
%Y A255236 Cf. A038725, A054490, A038723, A077446, 4*A077447, A254938, A255233.
%K A255236 nonn,easy
%O A255236 0,1
%A A255236 _Wolfdieter Lang_, Feb 26 2015