cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255237 Array of conversion coefficients for the minimal polynomials C of 2 cos(Pi/n) in terms of Chebyshev's S-polynomials.

This page as a plain text file.
%I A255237 #18 Apr 12 2018 14:27:38
%S A255237 1,2,1,0,1,-1,1,-1,0,1,0,-1,1,-2,0,1,0,0,-1,1,0,0,-1,0,1,-1,-1,0,1,2,
%T A255237 0,-2,0,1,0,0,0,0,-1,1,-1,0,-1,0,1,0,0,0,0,0,-1,1,-2,0,2,0,-2,0,1,-1,
%U A255237 -2,-1,1,1
%N A255237 Array of conversion coefficients for the minimal polynomials C of 2 cos(Pi/n) in terms of Chebyshev's S-polynomials.
%C A255237 The row length sequence is 1, 1 +  A055034(n), n >= 1.
%C A255237 For the minimal polynomial C(n, x) of the algebraic number rho(n) := 2*cos(Pi/n) (the length ratio of the smallest diagonal and the side of a regular n-gon) see the coefficient array in A187360. The coefficient triangle of Chebyshev's S-polynomials is given in A049310.
%C A255237 The conversion is C(n, x) = sum(T(n, m)*S(m, x), m=0..delta(n)), for n >= 0 with C(0, x) := 1 (undefined product), delta(0) = 0 and delta(n) = A055034(n), n >= 1.
%C A255237 Originally Ahmet Zahid KÜÇÜK observed the structure for prime n. The precise formula for odd primes prime(n) = A000040(n), n >= 2, is C(prime(n), x) = S((prime(n)-1)/2, x) - S((prime(n)-3)/2, x).
%C A255237 This is equivalent to  C(prime(n),x) = (-1)^((p(n)-1)/2)*S(prime(n)-1,I*sqrt(x-2)), with I^2 = -1.
%C A255237   Proof: The known identity S(n, x) - S(n-1, x) = (-1)^n*S(2*n, I*sqrt(x-2)) (from bisection). The degrees of the monic polynomials of both sides match, as do the known zeros.
%C A255237 The row sums give 1, 3, 1, 0, 0, 0, -1, 0, 0, -1, 1, 0, -1, 0, -1, -2, 0, 0, -1, 0 ...
%C A255237 The alternating row sums give 1, 1, -1, -2, 0, 2, -1, -2, 0, -1, 1, -2, -1, 2, -1, 0, 0, 2, -1, -2, ...
%C A255237 For the reverse problem, the factorization of S polynomials into C polynomials see a Apr 12 2018 comment in A049310. - _Wolfdieter Lang_, Apr 12 2018
%F A255237 The conversion is C(n, x) = sum(T(n, m)*S(m, x), m = 0..delta(n)), that is
%F A255237   T(n, m) = [S(m, x)] C(n, x), n >= 0, m = 0, ..., delta(n), with C(0, x) := 1, delta(0) = 0 and delta(n) = A055034(n), n >= 1. For the C and S polynomials see A187360 and A049310, respectively.
%F A255237 For  n >= 2: T(prime(n), (prime(n) -1)/2) = +1, T(prime(n), (prime(n) -3)/2) = -1 and T(prime(n), m) = 0 otherwise.
%e A255237 The array T(n, m) begins:
%e A255237 n\m   0  1  2  3  4  5  6 ...
%e A255237 0:    1
%e A255237 1:    2  1
%e A255237 2:    0  1
%e A255237 3:   -1  1
%e A255237 4:   -1  0  1
%e A255237 5:    0 -1  1
%e A255237 6:   -2  0  1
%e A255237 7:    0  0 -1  1
%e A255237 8:    0  0 -1  0  1
%e A255237 9:   -1 -1  0  1
%e A255237 10:   2  0 -2  0  1
%e A255237 11:   0  0  0  0 -1  1
%e A255237 12:  -1  0 -1  0  1
%e A255237 13:   0  0  0  0  0 -1  1
%e A255237 14:  -2  0  2  0 -2  0  1
%e A255237 15:  -1 -2 -1  1  1
%e A255237 ...
%e A255237 n=0: C(0, x) = 1 = 1*S(0, x),
%e A255237 n=1: C(1, x) = 2 + x = 2*S(0, x) + 1*S(1, x),
%e A255237 n=2: C(2, x) = x = 0*S(0, x) + 1*S(1, x),
%e A255237 n=3: C(3, x) = -1 + x = -1*S(0, x) + 1*S(1, x),
%e A255237 n=4: C(4, x) = -2 + x^2 = -1*S(0, x) + 0 + 1*S(2, x) = -1 + (-1 + x^2), ...
%Y A255237 Cf. A187360, A055034, A049310.
%K A255237 sign,easy,tabf
%O A255237 0,2
%A A255237 Ahmet Zahid KÜÇÜK and _Wolfdieter Lang_, Mar 11 2015