A255238 Triangle T(n, m) of numbers of points of a square lattice covered by a circular disk of radius n (centered at any lattice point taken as origin) with ordinate y = m in the first quadrant.
1, 2, 1, 3, 2, 1, 4, 3, 3, 1, 5, 4, 4, 3, 1, 6, 5, 5, 5, 4, 1, 7, 6, 6, 6, 5, 4, 1, 8, 7, 7, 7, 6, 5, 4, 1, 9, 8, 8, 8, 7, 7, 6, 4, 1, 10, 9, 9, 9, 9, 8, 7, 6, 5, 1, 11, 10, 10, 10, 10, 9, 9, 8, 7, 5, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0: 1 1: 2 1 2: 3 2 1 3: 4 3 3 1 4: 5 4 4 3 1 5: 6 5 5 5 4 1 6: 7 6 6 6 5 4 1 7: 8 7 7 7 6 5 4 1 8: 9 8 8 8 7 7 6 4 1 9: 10 9 9 9 9 8 7 6 5 1 10: 11 10 10 10 10 9 9 8 7 5 1 11: 12 11 11 11 11 10 10 9 8 7 5 1 12: 13 12 12 12 12 11 11 10 9 8 7 5 1 13: 14 13 13 13 13 13 12 11 11 10 9 7 6 1 14: 15 14 14 14 14 14 13 13 12 11 10 9 8 6 1 15: 16 15 15 15 15 15 14 14 13 13 12 11 10 8 6 1 ...
Links
- E. W. Weisstein, World of Mathematics, Gauss's Circle Problem .
Formula
T(n, m) = 1 + floor(sqrt(n^2 - m^2)), 0 <= m <= n.
Comments