cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255244 Numbers that divide the average of the sum of the squares of their divisors.

This page as a plain text file.
%I A255244 #38 May 22 2025 10:21:42
%S A255244 1,65,175,1105,5425,20737,32045,70525,103685,171275,200725,207553,
%T A255244 352529,372775,1037765,1198925,1264957,1347905,1762645,1824877,
%U A255244 2609425,2698189,3628975,3928475,4966975,6324785,6337175,8646625,8813225,9124385,10223341,12774139,13490945
%N A255244 Numbers that divide the average of the sum of the squares of their divisors.
%H A255244 Chai Wah Wu and Giovanni Resta, <a href="/A255244/b255244.txt">Table of n, a(n) for n = 1..328</a> (terms < 10^12, first 82 terms from Chai Wah Wu)
%e A255244 Divisors of 65 are 1, 5, 13, 65. The average of the sum of their squares is (1^2 + 5^2 + 13^2 + 65^2) / 4 = (1 + 25 + 169 + 4225) / 4 = 4420 / 4 = 1105 and 1105 / 65 = 17.
%p A255244 with(numtheory); P:=proc(q) local a,b,k,n;
%p A255244 for n from 2 to q do a:=divisors(n);
%p A255244 b:=add(a[k]^2,k=1..nops(a))/nops(a);
%p A255244 if type(b/n,integer) then lprint(n);
%p A255244 fi; od; end: P(10^6);
%t A255244 Select[Range[10^6],Mod[Mean[Divisors[#]^2],#]==0&] (* _Ivan N. Ianakiev_, Mar 03 2015 *)
%o A255244 (PARI) isok(n) = (q=sumdiv(n, d, d^2)/numdiv(n)) && (type(q)=="t_INT") && ((q % n) == 0); \\ _Michel Marcus_, Feb 20 2015
%o A255244 (Python)
%o A255244 from __future__ import division
%o A255244 from sympy import factorint
%o A255244 A255244_list = []
%o A255244 for n in range(1,10**9):
%o A255244     s0 = s2 = 1
%o A255244     for p,e in factorint(n).items():
%o A255244         s0 *= e+1
%o A255244         s2 *= (p**(2*(e+1))-1)//(p**2-1)
%o A255244     q, r = divmod(s2,s0)
%o A255244     if not (r or q % n):
%o A255244         A255244_list.append(n) # _Chai Wah Wu_, Mar 08 2015
%Y A255244 Cf. A000203, A255245.
%K A255244 nonn
%O A255244 1,2
%A A255244 _Paolo P. Lava_, Feb 20 2015
%E A255244 More terms from _Michel Marcus_, Feb 20 2015
%E A255244 a(31)-a(33) corrected by _Chai Wah Wu_, Mar 08 2015