cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255245 Numbers that divide the average of the squares of their aliquot parts.

This page as a plain text file.
%I A255245 #34 May 22 2025 10:21:42
%S A255245 10,65,140,420,2100,2210,20737,32045,200725,207370,1204350,1347905,
%T A255245 1762645,16502850,31427800,37741340,107671200,130643100,200728169,
%U A255245 239719720,357491225,417225900,430085380,766750575,1088692500,1132409168,1328204850,1788379460
%N A255245 Numbers that divide the average of the squares of their aliquot parts.
%C A255245 Ratio: 1, 1, 5, 10, 78, 1, 109, 565,...
%C A255245 If the ratio is equal to 1 we have 10, 65, 20737 (A140362).
%H A255245 Giovanni Resta, <a href="/A255245/b255245.txt">Table of n, a(n) for n = 1..59</a> (terms < 10^11)
%e A255245 Aliquot parts of 10 are 1, 2, 5. The average of their squares is (1^2 + 2^2 + 5^2) / 3 = (1 + 4 + 25) / 3 = 30 / 3 = 10 and 10 / 10 = 1.
%p A255245 with(numtheory); P:=proc(q) local a,b,k,n;
%p A255245 for n from 2 to q do a:=sort([op(divisors(n))]);
%p A255245 b:=add(a[k]^2,k=1..nops(a)-1)/(nops(a)-1);
%p A255245 if type(b/n,integer) then lprint(n);
%p A255245 fi; od; end: P(10^6);
%t A255245 Select[Range[10^6],Mod[Mean[Most[Divisors[#]^2]],#]==0&] (* _Ivan N. Ianakiev_, Mar 03 2015 *)
%o A255245 (PARI) isok(n) = (q=(sumdiv(n, d, (d!=n)*d^2)/(numdiv(n)-1))) && (type(q)=="t_INT") && ((q % n) == 0); \\ _Michel Marcus_, Feb 20 2015
%o A255245 (Python)
%o A255245 from __future__ import division
%o A255245 from sympy import factorint
%o A255245 A255245_list = []
%o A255245 for n in range(2,10**9):
%o A255245     s0 = s2 = 1
%o A255245     for p,e in factorint(n).items():
%o A255245         s0 *= e+1
%o A255245         s2 *= (p**(2*(e+1))-1)//(p**2-1)
%o A255245     q, r = divmod(s2-n**2,s0-1)
%o A255245     if not (r or q % n):
%o A255245         A255245_list.append(n) # _Chai Wah Wu_, Mar 08 2015
%Y A255245 Cf. A001065, A255244.
%K A255245 nonn
%O A255245 1,1
%A A255245 _Paolo P. Lava_, Feb 20 2015
%E A255245 More terms from _Michel Marcus_, Feb 20 2015
%E A255245 a(17)-a(24) from _Chai Wah Wu_, Mar 08 2015
%E A255245 a(25)-a(28) from _Giovanni Resta_, May 30 2016