cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255263 Differences between the total number of ON cells at stage n of two-dimensional cellular automaton defined by "Rule 750" using the von Neumann neighborhood and the total number of toothpicks in the toothpick structure A139250 that are parallel to the initial toothpick, after n odd rounds.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 12, 20, 0, 0, 0, 4, 0, 4, 12, 20, 0, 4, 12, 20, 12, 36, 80, 68, 0, 0, 0, 4, 0, 4, 12, 20, 0, 4, 12, 20, 12, 36, 80, 68, 0, 4, 12, 20, 12, 36, 80, 68, 12, 36, 80, 84, 96, 208, 352, 196, 0, 0, 0, 4, 0, 4, 12, 20, 0, 4, 12, 20, 12, 36, 80, 68, 0, 4, 12, 20, 12, 36, 80, 68, 12, 36, 80
Offset: 1

Views

Author

Omar E. Pol, Feb 19 2015

Keywords

Comments

It appears that the graph of A162795 lies between the graphs of A147562 and A169707.
It appears that a(n) = 0 if and only if n is a member of A048645.

Examples

			Written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782:
0;
0;
0,0;
0,0,4,0;
0,0,4,0,4,12,20,0;
0,0,4,0,4,12,20,0,4,12,20,12,36,80,68,0;
0,0,4,0,4,12,20,0,4,12,20,12,36,80,68,0,4,12,20,12,36,80,68,12,36,80,84,96,208,352,196,0;
...
It appears that if k is a power of 2 then T(j,k) = 0.
		

Crossrefs

Formula

a(n) = A169707(n) - A162795(n).