This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255270 #50 Jun 06 2025 12:15:49 %S A255270 0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %T A255270 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %U A255270 2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3 %N A255270 Integer part of fourth root of n. %C A255270 n appears (n+1)^4 - n^4 times (A005917). %H A255270 Bruno Berselli, <a href="/A255270/b255270.txt">Table of n, a(n) for n = 0..1000</a> %F A255270 a(n) = floor(n^(1/4)) = floor(sqrt(A000196(n))). %F A255270 G.f.: Sum_{k>=1} x^(k^4)/(1 - x). - _Ilya Gutkovskiy_, Dec 22 2016 %F A255270 a(n) = Sum_{i=1..n} A219009(i)*floor(n/i). - _Ridouane Oudra_, Feb 26 2023 %p A255270 A255270 := proc(n) %p A255270 floor( n^(1/4)) ; %p A255270 end proc: %p A255270 seq(A255270(n),n=0..100) ; # _R. J. Mathar_, May 08 2020 %t A255270 Floor[Range[0, 100]^(1/4)] %o A255270 (PARI) vector(100, n, n--; floor(n^(1/4))) %o A255270 (PARI) a(n) = sqrtnint(n, 4); \\ _Michel Marcus_, Dec 22 2016 %o A255270 (Sage) [floor(n^(1/4)) for n in (0..100)] %o A255270 (Magma) [IsZero(n) select 0 else Iroot(n, 4): n in [0..100]]; %o A255270 (Magma) [Floor(n^(1/4)): n in [0..100]]; // _Vincenzo Librandi_, Feb 20 2015 %o A255270 (Python) %o A255270 from sympy import integer_nthroot %o A255270 def A255270(n): return integer_nthroot(n,4)[0] # _Chai Wah Wu_, Jun 06 2025 %Y A255270 Cf. A005917. %Y A255270 Cf. sequences of the type floor(n^(1/k)): A000196 (k=2), A048766 (k=3), this sequence (k=4), A178487 (k=5), A178489 (k=6). %Y A255270 Cf. A219009. %K A255270 nonn,easy %O A255270 0,17 %A A255270 _Bruno Berselli_, Feb 20 2015