A255288 Number of 2's in expansion of F^n mod 3, where F = 1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y.
0, 0, 13, 0, 0, 32, 13, 104, 112, 0, 0, 104, 0, 0, 184, 32, 256, 296, 13, 104, 208, 104, 832, 836, 112, 896, 1081, 0, 0, 104, 0, 0, 256, 104, 832, 896, 0, 0, 832, 0, 0, 1400, 184, 1472, 1768, 32, 256, 932, 256, 2048, 2692, 296
Offset: 0
Keywords
Examples
The pairs [no. of 1's, no. of 2's] are [1, 0], [8, 0], [8, 13], [8, 0], [64, 0], [52, 32], [8, 13], [64, 104], [101, 112], [8, 0], [64, 0], [64, 104], [64, 0], [512, 0], [404, 184], [52, 32], [416, 256], [448, 296], [8, 13], [64, 104], [233, 208], [64, 104], [512, 832], [700, 836], [101, 112], [808, 896], [992, 1081], ...
Programs
-
Maple
# C3 Counts 1's and 2's C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2; f2:=expand(f) mod 3; n1:=0; n2:=0; if whattype(f2) = `+` then t1:=nops(f2); for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y); c:=coeff(coeff(t2,x,ix),y,iy); if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]); else ix:=degree(f2, x); iy:=degree(f2, y); c:=coeff(coeff(f2,x,ix),y,iy); if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]); fi; end; F1:=1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y mod 3; g:=(F,n)->expand(F^n) mod 3; [seq(C3(g(F1,n))[2],n=0..60)];
Comments