A255289 Number of 1's in expansion of F^n mod 3, where F = 1/(x*y)+2/y+x/y+2/x+2*x+y/x+2*y+x*y.
1, 4, 12, 4, 32, 48, 12, 84, 117, 4, 32, 84, 32, 256, 300, 48, 336, 324, 12, 84, 225, 84, 672, 792, 117, 852, 876, 4, 32, 84, 32, 256, 336, 84, 672, 852, 32, 256, 672, 256, 2048, 2316, 300, 2352, 2448, 48, 336, 900, 336
Offset: 0
Keywords
Examples
The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 4], [12, 9], [4, 4], [32, 32], [48, 36], [12, 9], [84, 84], [117, 96], [4, 4], [32, 32], [84, 84], [32, 32], [256, 256], [300, 288], [48, 36], [336, 336], [324, 420], [12, 9], [84, 84], [225, 216], [84, 84], [672, 672], [792, 744], [117, 96], [852, 852], [876, 1197], ...
Programs
-
Maple
# C3 Counts 1's and 2's C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2; f2:=expand(f) mod 3; n1:=0; n2:=0; if whattype(f2) = `+` then t1:=nops(f2); for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y); c:=coeff(coeff(t2,x,ix),y,iy); if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]); else ix:=degree(f2, x); iy:=degree(f2, y); c:=coeff(coeff(f2,x,ix),y,iy); if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]); fi; end; F2:=1/(x*y)+2/y+x/y+2/x+2*x+y/x+2*y+x*y mod 3; g:=(F,n)->expand(F^n) mod 3; [seq(C3(g(F2,n))[1],n=0..60)];
Comments