cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255293 Number of 1's in expansion of F^n mod 3, where F = 1/x+2+x+1/y+y.

Original entry on oeis.org

1, 4, 8, 4, 17, 29, 8, 37, 49, 4, 17, 37, 17, 76, 128, 29, 136, 196, 8, 37, 89, 37, 176, 292, 49, 260, 584, 4, 17, 37, 17, 76, 136, 37, 176, 260, 17, 76, 176, 76, 353, 605, 128, 613, 961, 29, 136, 332, 136, 653, 1105, 196
Offset: 0

Views

Author

N. J. A. Sloane, Feb 21 2015

Keywords

Comments

A255293 and A255294 together are a second mod 3 analog of A072272.

Examples

			The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 1], [8, 5], [4, 1], [17, 8], [29, 20], [8, 5], [37, 28], [49, 64], [4, 1], [17, 8], [37, 28], [17, 8], [76, 49], [128, 101], [29, 20], [136, 109], [196, 241], [8, 5], [37, 28], [89, 80], [37, 28], [176, 149], [292, 289], [49, 64], [260, 305], [584, 437], [4, 1], [17, 8], [37, 28], ...
		

Crossrefs

Programs

  • Maple
    # C3 Counts 1's and 2's
    C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
    f2:=expand(f) mod 3; n1:=0; n2:=0;
    if whattype(f2) = `+` then
    t1:=nops(f2);
    for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
    c:=coeff(coeff(t2,x,ix),y,iy);
    if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
    else ix:=degree(f2, x); iy:=degree(f2, y);
    c:=coeff(coeff(f2,x,ix),y,iy);
    if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
    fi;
    end;
    F4:=1/x+2+x+1/y+y mod 3;
    g:=(F,n)->expand(F^n) mod 3;
    [seq(C3(g(F4,n))[1],n=0..60)];