This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A255313 #13 Aug 04 2021 15:33:31 %S A255313 3,5,3,7,5,3,7,5,7,5,11,7,5,7,5,13,11,7,5,7,5,13,11,13,11,7,5,3,17,13, %T A255313 11,13,11,7,5,3,19,17,13,11,13,11,7,5,3,19,17,19,17,13,11,7,5,7,5,23, %U A255313 19,17,19,17,13,11,7,5,7,5,23,19,17,19,23,19,13 %N A255313 Triangle read by rows: row n contains the sums of adjacent pairs of terms in row n of A088643. %C A255313 All terms are prime by definition of A088643. %C A255313 See A255313 for sorted distinct terms and A255395 for number of distinct terms. %H A255313 Reinhard Zumkeller, <a href="/A255313/b255313.txt">Rows n = 1..125 of triangle, flattened</a> %F A255313 T(n,k) = A088643(n,k-1) + A088643(n,k), 1 <= k <= n; %F A255313 T(n,1) = A060265(n+1); %e A255313 . n | T(n,k) | A255316 %e A255313 . ---+--------------------------------------------+---------------------- %e A255313 . 1 | 3 | 3 %e A255313 . 2 | 5 3 | 3 5 %e A255313 . 3 | 7 5 3 | 3 5 7 %e A255313 . 4 | 7 5 7 5 | 5 7 %e A255313 . 5 | 11 7 5 7 5 | 5 7 11 %e A255313 . 6 | 13 11 7 5 7 5 | 5 7 11 13 %e A255313 . 7 | 13 11 13 11 7 5 3 | 3 5 7 11 13 %e A255313 . 8 | 17 13 11 13 11 7 5 3 | 3 5 7 11 13 17 %e A255313 . 9 | 19 17 13 11 13 11 7 5 3 | 3 5 7 11 13 17 19 %e A255313 . 10 | 19 17 19 17 13 11 7 5 7 5 | 5 7 11 13 17 19 %e A255313 . 11 | 23 19 17 19 17 13 11 7 5 7 5 | 5 7 11 13 17 19 23 %e A255313 . 12 | 23 19 17 19 23 19 13 11 7 5 7 5 | 5 7 11 13 17 19 23 %e A255313 . 13 | 23 19 23 19 17 23 19 11 7 11 13 7 3 | 3 7 11 13 17 19 23 %e A255313 . 14 | 29 23 19 23 19 17 23 19 11 7 11 13 7 3 | 3 7 11 13 17 19 23 29 %t A255313 (* A is A088643 *) %t A255313 A[n_, 1] := n; %t A255313 A[n_, k_] := A[n, k] = For[m = n-1, m >= 1, m--, If[PrimeQ[m + A[n, k-1]] && FreeQ[Table[A[n, j], {j, 1, k-1}], m], Return[m]]]; %t A255313 T[n_] := T[n] = 2 MovingAverage[Table[A[n+1, k], {k, 1, n+1}], {1, 1}]; %t A255313 Array[T, 14] // Flatten (* _Jean-François Alcover_, Aug 02 2021 *) %o A255313 (Haskell) %o A255313 a255313 n k = a255313_tabl !! (n-1) !! (k-1) %o A255313 a255313_row n = a255313_tabl !! (n-1) %o A255313 a255313_tabl = zipWith (zipWith (+)) tss $ map tail tss %o A255313 where tss = tail a088643_tabl %Y A255313 Cf. A088643, A255316, A255395, A060265. %K A255313 nonn,tabl %O A255313 1,1 %A A255313 _Reinhard Zumkeller_, Feb 22 2015