cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255322 a(n) = Product_{k=0..n} (k^2)!.

This page as a plain text file.
%I A255322 #30 Apr 24 2024 06:13:07
%S A255322 1,1,24,8709120,182219087869378560000,
%T A255322 2826438545846116156142906806150103040000000000,
%U A255322 1051416277636507481568264360276689674557030810000137484550133942059008000000000000000000
%N A255322 a(n) = Product_{k=0..n} (k^2)!.
%C A255322 Partial products of A088020. - _Michel Marcus_, Jul 06 2019
%H A255322 Seiichi Manyama, <a href="/A255322/b255322.txt">Table of n, a(n) for n = 0..12</a>
%F A255322 a(n) ~ c * n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n), where c = A255504 = 3.048330306522348566911920417337613015885313475... .
%F A255322 From _Vaclav Kotesovec_, Apr 23 2024: (Start)
%F A255322 a(n) = Product_{j=1..n^2} j^(n - ceiling(sqrt(j)) + 1).
%F A255322 a(n) = (n^2)!^n * (n!)^2 / Product_{j=1..n^2} j^(floor(sqrt(j))). (End)
%t A255322 Table[Product[(k^2)!, {k, 0, n}], {n, 0, 10}]
%t A255322 FoldList[Times,(Range[0,6]^2)!] (* _Harvey P. Dale_, Jan 30 2022 *)
%t A255322 Table[(n^2)!^(n+1) / Product[j^(Ceiling[Sqrt[j]]), {j, 1, n^2}], {n, 0, 6}] (* _Vaclav Kotesovec_, Apr 23 2024 *)
%t A255322 Table[(n^2)!^n * (n!)^2 / Product[j^(Floor[Sqrt[j]]), {j, 1, n^2}], {n, 0, 6}] (* _Vaclav Kotesovec_, Apr 23 2024 *)
%o A255322 (PARI) {a(n) = prod(k=1, n, (k^2)!)} \\ _Seiichi Manyama_, Jul 06 2019
%Y A255322 Cf. A000178, A255358, A255359, A255360.
%Y A255322 Cf. A002109, A051675, A255321, A255323, A255344.
%Y A255322 Cf. A000142, A255268, A255269, A255504.
%Y A255322 Cf. A272094, A372240, A372241.
%K A255322 nonn
%O A255322 0,3
%A A255322 _Vaclav Kotesovec_, Feb 21 2015