A255351 Values of b = max {a,b,c,d} for solutions to a^4 + b^4 = c^4 + d^4, a < c < d < b, ordered by size of b.
158, 239, 292, 316, 474, 478, 502, 542, 584, 631, 632, 717, 790, 876, 948, 956, 1004, 1084, 1106, 1168, 1195, 1203, 1262, 1264, 1381, 1422, 1434, 1460, 1506, 1580, 1626, 1673, 1738, 1752, 1893, 1896, 1912
Offset: 1
Keywords
Examples
The quadruples [a,b,c,d] are, listed in order of increasing b = max{a,b,c,d}: [59, 158, 133, 134], [7, 239, 157, 227], [193, 292, 256, 257], [118, 316, 266, 268], [177, 474, 399, 402], [14, 478, 314, 454], [271, 502, 298, 497], [103, 542, 359, 514], [386, 584, 512, 514], [222, 631, 503, 558], [236, 632, 532, 536], [21, 717, 471, 681], [295, 790, 665, 670], [579, 876, 768, 771], [354, 948, 798, 804], [28, 956, 628, 908], ...
Links
- Mia Muessig, Table of n, a(n) for n = 1..30000
- Mia Muessig, Julia code for finding general taxicab numbers
Programs
-
PARI
{n=4;for(b=1,1999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(b",");next(3))))}
Comments