A255360 Product_{k=0..n} (k^5)!.
1, 1, 263130836933693530167218012160000000
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..3
Crossrefs
Programs
-
Mathematica
Table[Product[(k^5)!, {k, 0, n}], {n, 0, 4}] Table[Product[j^(n - Ceiling[j^(1/5)] + 1), {j, 1, n^5}], {n, 0, 4}] (* Vaclav Kotesovec, Apr 25 2024 *)
Formula
a(n) ~ c * n^(80/63 + 5*n/2 - 5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36), where c = A255439 = 11.354954749729782312106... .
a(n) = Product_{j=1..n^5} j^(n - ceiling(j^(1/5)) + 1). - Vaclav Kotesovec, Apr 25 2024
Comments